Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Nanobiomed Res ; 3(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37547672

RESUMO

Decellularized extracellular matrix (dECM) is a promising material for tissue engineering applications. Tissue-specific dECM is often seen as a favorable material that recapitulates a native-like microenvironment for cellular remodeling. However, the minute quantity of dECM derivable from small organs like the vocal fold (VF) hampers manufacturing scalability. Small intestinal submucosa (SIS), a commercial product with proven regenerative capacity, may be a viable option for VF applications. This study aims to compare dECM hydrogels derived from SIS or VF tissue with respect to protein content and functionality using mass spectrometry-based proteomics and in vitro studies. Proteomic analysis reveals that VF and SIS dECM share 75% of core matrisome proteins. Although VF dECM proteins have greater overlap with native VF, SIS dECM shows less cross-sample variability. Following decellularization, significant reductions of soluble collagen (61%), elastin (81%), and hyaluronan (44%) are noted in VF dECM. SIS dECM contains comparable elastin and hyaluronan but 67% greater soluble collagen than VF dECM. Cells deposit more neo-collagen on SIS than VF-dECM hydrogels, whereas neo-elastin (~50 µg/scaffold) and neo-hyaluronan (~ 6 µg/scaffold) are comparable between the two hydrogels. Overall, SIS dECM possesses reasonably similar proteomic profile and regenerative capacity to VF dECM. SIS dECM is considered a promising alternative for dECM-derived biomaterials for VF regeneration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36682335

RESUMO

Monoamines are a class of neuromodulators that are crucial for a variety of brain functions, including control of mood, movement, sleep and cognition. From mammals to insects, the nervous system is enriched in monoamines such as dopamine, serotonin and melatonin, analytes which range from being highly polar to non-polar. Here we developed a method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) to quantify in a single run the amounts of six distinct monoamines in extracts from dissected Drosophila and mouse brain tissues. The measured monoamines were dopamine (DA), serotonin (also known as 5-hydroxytryptamine (5-HT)), octopamine (OA, an insect equivalent of norepinephrine), tyramine (TA), melatonin (MT) and N-acetylserotonin (NAS). The analytical range of these monoamines was between 0.25 and 5.0 ng/mL. This quantitative LC-MS/MS methodology has important use for simultaneous measurement of distinct neuroactive monoamines from precious biological specimens.


Assuntos
Dopamina , Melatonina , Camundongos , Animais , Cromatografia Líquida/métodos , Dopamina/análise , Espectrometria de Massas em Tandem/métodos , Serotonina , Aminas , Encéfalo , Monoaminas Biogênicas , Cromatografia Líquida de Alta Pressão/métodos , Mamíferos
3.
NPJ Antimicrob Resist ; 1(1): 7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38686213

RESUMO

Despite our best efforts to discover new antimicrobials, bacteria have evolved mechanisms to become resistant. Resistance to antimicrobials can be attributed to innate, inducible, and acquired mechanisms. Mycobacterium abscessus is one of the most antimicrobial resistant bacteria and is known to cause chronic pulmonary infections within the cystic fibrosis community. Previously, we identified epetraborole as an inhibitor against M. abscessus with in vitro and in vivo activities and that the efficacy of epetraborole could be improved with the combination of the non-proteinogenic amino acid norvaline. Norvaline demonstrated activity against the M. abscessus epetraborole resistant mutants thus, limiting resistance to epetraborole in wild-type populations. Here we show M. abscessus mutants with resistance to epetraborole can acquire resistance to norvaline in a leucyl-tRNA synthetase (LeuRS) editing-independent manner. After showing that the membrane hydrophobicity and efflux activity are not linked to norvaline resistance, whole-genome sequencing identified a mutation in the allosteric regulatory domain of α-isopropylmalate synthase (α-IPMS). We found that mutants with the α-IPMSA555V variant incorporated less norvaline in the proteome and produced more leucine than the parental strain. Furthermore, we found that leucine can rescue growth inhibition from norvaline challenge in the parental strain. Our results demonstrate that M. abscessus can modulate its metabolism through mutations in an allosteric regulatory site to upregulate the biosynthesis of the natural LeuRS substrate and outcompete norvaline. These findings emphasize the antimicrobial resistant nature of M. abscessus and describe a unique mechanism of substrate-inhibitor competition.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35777526

RESUMO

AIM: Psychedelic compounds elicit relief from mental disorders. However, the underpinnings of therapeutic improvement remain poorly understood. Here, we investigated the effects of repeated lysergic acid diethylamide (LSD) on whole-genome DNA methylation and protein expression in the mouse prefrontal cortex (PFC). METHODS: Whole genome bisulphite sequencing (WGBS) and proteomics profiling of the mouse prefrontal cortex (PFC) were performed to assess DNA methylation and protein expression changes following 7 days of repeated LSD administration (30 µg/kg/day); a treatment we previously found to potentiate excitatory neurotransmission and to increase dendritic spine density in the PFC in mice. qRT-PCR was employed to validate candidate genes detected in both analyses. RESULTS: LSD significantly modulated DNA methylation in 635 CpG sites of the mouse PFC, and in an independent cohort the expression level of 178 proteins. Gene signaling pathways affected are involved in nervous system development, axon guidance, synaptic plasticity, quantity and cell viability of neurons and protein translation. Four genes and their protein product were detected as differentially methylated and expressed, and their transcription was increased. Specifically, Coronin 7 (Coro7), an axon guidance cue; Penta-EF-Hand Domain Containing 1 (Pef1), an mTORC1 and cell cycle modulator; Ribosomal Protein S24 (Rps24), required for pre-rRNA maturation and biogenesis of proteins involved with cell proliferation and migration, and Abhydrolase Domain Containing 6, Acylglycerol Lipase (Abhd6), a post-synaptic lipase. CONCLUSIONS: LSD affects DNA methylation, altering gene expression and protein expression related to neurotropic-, neurotrophic- and neuroplasticity signaling. This could represent a core mechanism mediating the effects of psychedelics.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Animais , Metilação de DNA , Humanos , Lipase/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Camundongos , Monoacilglicerol Lipases/metabolismo , Plasticidade Neuronal , Córtex Pré-Frontal/metabolismo , Proteômica
5.
Methods ; 203: 17-27, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35331912

RESUMO

Patient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson's disease (PD) - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain essential as organoid models evolve. To solve this problem, we have designed a workflow to reproducibly extract proteins from brain organoids, measure global turnover using mass spectrometry, and statistically investigate turnover differences between genotypes. We also provide robust methodology for data filtering and statistical treatment of turnover data. Using human midbrain organoids (hMO) as a model system, our method accurately characterized the half-lives of 773 midbrain proteins. We compared these half-lives both to Parkin knockout hMOs and to previously reported data from primary cell cultures and in vivo models. Overall, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Técnicas de Cultura de Células , Humanos , Espectrometria de Massas , Neurônios/metabolismo
6.
PLoS Pathog ; 17(10): e1009965, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637487

RESUMO

Mycobacterium abscessus is the most common rapidly growing non-tuberculous mycobacteria to cause pulmonary disease in patients with impaired lung function such as cystic fibrosis. M. abscessus displays high intrinsic resistance to common antibiotics and inducible resistance to macrolides like clarithromycin. As such, M. abscessus is clinically resistant to the entire regimen of front-line M. tuberculosis drugs, and treatment with antibiotics that do inhibit M. abscessus in the lab results in cure rates of 50% or less. Here, we identified epetraborole (EPT) from the MMV pandemic response box as an inhibitor against the essential protein leucyl-tRNA synthetase (LeuRS) in M. abscessus. EPT protected zebrafish from lethal M. abscessus infection and did not induce self-resistance nor against clarithromycin. Contrary to most antimycobacterials, the whole-cell activity of EPT was greater against M. abscessus than M. tuberculosis, but crystallographic and equilibrium binding data showed that EPT binds LeuRSMabs and LeuRSMtb with similar residues and dissociation constants. Since EPT-resistant M. abscessus mutants lost LeuRS editing activity, these mutants became susceptible to misaminoacylation with leucine mimics like the non-proteinogenic amino acid norvaline. Proteomic analysis revealed that when M. abscessus LeuRS mutants were fed norvaline, leucine residues in proteins were replaced by norvaline, inducing the unfolded protein response with temporal changes in expression of GroEL chaperonins and Clp proteases. This supports our in vitro data that supplementation of media with norvaline reduced the emergence of EPT mutants in both M. abscessus and M. tuberculosis. Furthermore, the combination of EPT and norvaline had improved in vivo efficacy compared to EPT in a murine model of M. abscessus infection. Our results emphasize the effectiveness of EPT against the clinically relevant cystic fibrosis pathogen M. abscessus, and these findings also suggest norvaline adjunct therapy with EPT could be beneficial for M. abscessus and other mycobacterial infections like tuberculosis.


Assuntos
Antituberculosos/farmacologia , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus/efeitos dos fármacos , Valina/análogos & derivados , Animais , Quimioterapia Combinada/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Valina/farmacologia , Peixe-Zebra
7.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680183

RESUMO

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.

8.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806352

RESUMO

Lipids play essential roles in numerous cellular processes, including membrane remodeling, signal transduction, the modulation of hormone activity, and steroidogenesis. We chose steroidogenic MA-10 mouse tumor Leydig cells to investigate subcellular lipid localization during steroidogenesis. Electron microscopy showed that cAMP stimulation increased associations between the plasma membrane (PM) and the endoplasmic reticulum (ER) and between the ER and mitochondria. cAMP stimulation also increased the movement of cholesterol from the PM compared to untreated cells, which was partially inhibited when ATPase family AAA-domain containing protein 3 A (ATAD3A), which functions in ER and mitochondria interactions, was knocked down. Mitochondria, ER, cytoplasm, PM, PM-associated membranes (PAMs), and mitochondria-associated membranes (MAMs) were isolated from control and hormone-stimulated cells. Lipidomic analyses revealed that each isolated compartment had a unique lipid composition, and the induction of steroidogenesis caused the significant remodeling of its lipidome. cAMP-induced changes in lipid composition included an increase in phosphatidylserine and cardiolipin levels in PAM and PM compartments, respectively; an increase in phosphatidylinositol in the ER, mitochondria, and MAMs; and a reorganization of phosphatidic acid, cholesterol ester, ceramide, and phosphatidylethanolamine. Abundant lipids, such as phosphatidylcholine, were not affected by hormone treatment. Our data suggested that PM-ER-mitochondria tethering may be involved in lipid trafficking between organelles and indicated that hormone-induced acute steroid production involves extensive organelle remodeling.


Assuntos
Tumor de Células de Leydig/metabolismo , Lipídeos de Membrana/metabolismo , Esteroides/biossíntese , Neoplasias Testiculares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Bucladesina/farmacologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , AMP Cíclico/farmacologia , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Tumor de Células de Leydig/ultraestrutura , Lipidômica , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Neoplasias Testiculares/ultraestrutura
9.
J Neurosurg ; 132(5): 1589-1597, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026839

RESUMO

OBJECTIVE: Deep vein thrombosis (DVT) is a major focus of patient safety indicators and a common cause of morbidity and mortality. Many practices have employed lower-extremity screening ultrasonography in addition to chemoprophylaxis and the use of sequential compression devices in an effort to reduce poor outcomes. However, the role of screening in directly decreasing pulmonary emboli (PEs) and mortality is unclear. At the University of Mississippi Medical Center, a policy change provided the opportunity to compare independent groups: patients treated under a prior paradigm of weekly screening ultrasonography versus a post-policy change group in which weekly surveillance was no longer performed. METHODS: A total of 2532 consecutive cases were reviewed, with a 4-month washout period around the time of the policy change. Criteria for inclusion were admission to the neurosurgical service or consultation for ≥ 72 hours and hospitalization for ≥ 72 hours. Patients with a known diagnosis of DVT on admission or previous inferior vena cava (IVC) filter placement were excluded. The primary outcome examined was the rate of PE diagnosis, with secondary outcomes of all-cause mortality at discharge, DVT diagnosis rate, and IVC filter placement rate. A p value < 0.05 was considered significant. RESULTS: A total of 485 patients met the criteria for the pre-policy change group and 504 for the post-policy change group. Data are presented as screening (pre-policy change) versus no screening (post-policy change). There was no difference in the PE rate (2% in both groups, p = 0.72) or all-cause mortality at discharge (7% vs 6%, p = 0.49). There were significant differences in the lower-extremity DVT rate (10% vs 3%, p < 0.01) or IVC filter rate (6% vs 2%, p < 0.01). CONCLUSIONS: Based on these data, screening Doppler ultrasound examinations, in conjunction with standard-of-practice techniques to prevent thromboembolism, do not appear to confer a benefit to patients. While the screening group had significantly higher rates of DVT diagnosis and IVC filter placement, the screening, additional diagnoses, and subsequent interventions did not appear to improve patient outcomes. Ultimately, this makes DVT screening difficult to justify.

10.
Mol Cell Biol ; 36(6): 1007-18, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755559

RESUMO

The heat shock protein 90 (HSP90) and cell division cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests that thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90 binding between wild-type (WT) and kinase-dead (KD) glycogen synthase kinase 3ß (GSK3ß) forms. Using model cell lines stably expressing these two GSK3ß forms, we observed no interaction between WT GSK3ß and HSP90, in stark contrast to KD GSK3ß forming a stable complex with HSP90 at a 1:1 ratio. In a survey of 91 ectopically expressed kinases in DLD-1 cells, we compared two parameters to measure HSP90 dependency: static binding and kinase stability following HSP90 inhibition. We observed no correlation between HSP90 binding and reduced stability of a kinase after pharmacological inhibition of HSP90. We expanded our stability study to >50 endogenous kinases across four cell lines and demonstrated that HSP90 dependency is context dependent. These observations suggest that HSP90 binds to its kinase client in a particular conformation that we hypothesize to be associated with the nucleotide-processing cycle. Lastly, we performed proteomics profiling of kinases and phosphopeptides in DLD-1 cells to globally define the impact of HSP90 inhibition on the kinome.


Assuntos
Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mutação , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Ligação Proteica , Proteínas Quinases/metabolismo
11.
J Proteome Res ; 14(1): 457-66, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25299736

RESUMO

Threatened preterm labor (TPTL) accounts for ∼30% of pregnancy-related hospital admissions. Maternal peripheral leukocytes can be used to monitor a variety of physiological processes occurring in the body. Two high-throughput mass spectrometry methodologies, SWATH and iTRAQ, were used to study differentially expressed peripheral blood leukocyte lysate proteins in symptomatic women admitted for TPTL who had a preterm birth within 48 h (n = 16) and those who did not (n = 24). The SWATH spectral library consisted of 783 proteins. SWATH methodology quantified 258 proteins (using ≥2 peptides) and 5 proteins (ALBU, ANXA6, HNRPK, HSP90A, and PDIA1) were differentially expressed (p < 0.05, Mann-Whitney U). iTRAQ workflow identified 765 proteins; 354 proteins were quantified and 14 proteins (MIF, UBIQ, HXK3, ALBU, HNRPD, ST1A2, RS15A, RAP1B, CAN1, IQGA2, ST1A1, COX5A, ADDA, and UBQL1) were significantly different between the two groups of women (p < 0.05, Mann-Whitney U). Albumin was the only common differentially expressed protein in both SWATH (28% decrease) and iTRAQ studies (45% decrease). This decrease in albumin was validated using ELISA (11% decrease, p < 0.05, Mann-Whitney U) in another 23 TPTL women. This work suggests that albumin is a broad indicator of leukocyte activation with impending preterm birth and provides new future work directions to understand the pathophysiology of TPTL.


Assuntos
Regulação da Expressão Gênica/fisiologia , Trabalho de Parto Prematuro/sangue , Trabalho de Parto Prematuro/fisiopatologia , Nascimento Prematuro/fisiopatologia , Albumina Sérica/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Espectrometria de Massas/métodos , Gravidez , Nascimento Prematuro/sangue , Estatísticas não Paramétricas , Fatores de Tempo , Austrália Ocidental
12.
Mol Cell ; 54(6): 1034-1041, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24910098

RESUMO

Cell signaling depends on dynamic protein-protein interaction (PPI) networks, often assembled through modular domains each interacting with multiple peptide motifs. This complexity raises a conceptual challenge, namely to define whether a particular cellular response requires assembly of the complete PPI network of interest or can be driven by a specific interaction. To address this issue, we designed variants of the Grb2 SH2 domain ("pY-clamps") whose specificity is highly biased toward a single phosphotyrosine (pY) motif among many potential pYXNX Grb2-binding sites. Surprisingly, directing Grb2 predominantly to a single pY site of the Ptpn11/Shp2 phosphatase, but not other sites tested, was sufficient for differentiation of the essential primitive endoderm lineage from embryonic stem cells. Our data suggest that discrete connections within complex PPI networks can underpin regulation of particular biological events. We propose that this directed wiring approach will be of general utility in functionally annotating specific PPIs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Proteína Adaptadora GRB2/metabolismo , Mapas de Interação de Proteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Animais , Sítios de Ligação/genética , Diferenciação Celular/genética , Linhagem Celular , Cristalografia por Raios X , Células-Tronco Embrionárias/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Proteína Adaptadora GRB2/genética , Camundongos , Modelos Moleculares , Ligação Proteica/genética , Estrutura Terciária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/ultraestrutura , Transdução de Sinais/genética
13.
Nature ; 499(7457): 166-71, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23846654

RESUMO

Cell-surface receptors frequently use scaffold proteins to recruit cytoplasmic targets, but the rationale for this is uncertain. Activated receptor tyrosine kinases, for example, engage scaffolds such as Shc1 that contain phosphotyrosine (pTyr)-binding (PTB) domains. Using quantitative mass spectrometry, here we show that mammalian Shc1 responds to epidermal growth factor (EGF) stimulation through multiple waves of distinct phosphorylation events and protein interactions. After stimulation, Shc1 rapidly binds a group of proteins that activate pro-mitogenic or survival pathways dependent on recruitment of the Grb2 adaptor to Shc1 pTyr sites. Akt-mediated feedback phosphorylation of Shc1 Ser 29 then recruits the Ptpn12 tyrosine phosphatase. This is followed by a sub-network of proteins involved in cytoskeletal reorganization, trafficking and signal termination that binds Shc1 with delayed kinetics, largely through the SgK269 pseudokinase/adaptor protein. Ptpn12 acts as a switch to convert Shc1 from pTyr/Grb2-based signalling to SgK269-mediated pathways that regulate cell invasion and morphogenesis. The Shc1 scaffold therefore directs the temporal flow of signalling information after EGF stimulation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Transdução de Sinais , Animais , Mama/citologia , Linhagem Celular , Células Epiteliais/citologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Retroalimentação Fisiológica , Proteína Adaptadora GRB2/deficiência , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Ligação Proteica , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Adaptadoras da Sinalização Shc/deficiência , Proteínas Adaptadoras da Sinalização Shc/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Fatores de Tempo
14.
Cell ; 152(5): 1008-20, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452850

RESUMO

Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.


Assuntos
Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteína Adaptadora GRB2/metabolismo , Proteína SOS1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem da Célula , Endoderma/metabolismo , Eucariotos/genética , Eucariotos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
15.
Proteomics ; 13(8): 1334-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23401482

RESUMO

Gangliosides are ubiquitous components of cell membranes. Their interactions with bacterial toxins and membrane-associated proteins (e.g. receptor tyrosine kinases) have important roles in the regulation of multiple cellular functions. Currently, an effective approach for measuring ganglioside-protein interactions especially in a large-scale fashion is largely missing. To this end, we report a facile MS-based approach to explore gangliosides extracted from cells and measure their interactions with protein of interest globally. We optimized a two-step protocol for extracting total gangliosides from cells within 2 h. Easy-to-use magnetic beads conjugated with a protein of interest were used to capture interacting gangliosides. To measure ganglioside-protein interaction on a global scale, we applied a high-sensitive LC-MS system, containing hydrophilic interaction LC separation and multiple reaction monitoring-based MS for ganglioside detection. Sensitivity for ganglioside GM1 is below 100 pg, and the whole analysis can be done in 20 min with isocratic elution. To measure ganglioside interactions with soluble vascular endothelial growth factor receptor 1 (sFlt1), we extracted and readily detected 36 species of gangliosides from perivascular retinal pigment epithelium cells across eight different classes. Twenty-three ganglioside species have significant interactions with sFlt1 as compared with IgG control based on p value cutoff <0.05. These results show that the described method provides a rapid and high-sensitive approach for systematically measuring ganglioside-protein interactions.


Assuntos
Gangliosídeos/análise , Gangliosídeos/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Cromatografia Líquida/métodos , Gangliosídeos/isolamento & purificação , Humanos , Magnetismo , Espectrometria de Massas/instrumentação , Espectrometria de Massas/normas , Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Epitélio Pigmentado da Retina/metabolismo , Sensibilidade e Especificidade , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Nat Biotechnol ; 29(7): 653-8, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706016

RESUMO

Signaling pathways are commonly organized through inducible protein-protein interactions, mediated by adaptor proteins that link activated receptors to cytoplasmic effectors. However, we have little quantitative data regarding the kinetics with which such networks assemble and dissolve to generate specific cellular responses. To address this deficiency, we designed a mass spectrometry method, affinity purification-selected reaction monitoring (AP-SRM), which we used to comprehensively and quantitatively investigate changes in protein interactions with GRB2, an adaptor protein that participates in a remarkably diverse set of protein complexes involved in multiple aspects of cellular function. Our data reliably define context-specific and time-dependent networks that form around GRB2 after stimulation, and reveal core and growth factor-selective complexes comprising 90 proteins identified as interacting with GRB2 in HEK293T cells. Capturing a key hub protein and dissecting its interactions by SRM should be equally applicable to quantifying signaling dynamics for a range of hubs in protein interaction networks.


Assuntos
Cromatografia de Afinidade/métodos , Proteína Adaptadora GRB2/metabolismo , Espectrometria de Massas/métodos , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais/fisiologia , Células HEK293 , Humanos
17.
Mol Cell ; 34(2): 139-40, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19394291

RESUMO

Analyzing global protein phosphorylation by mass spectrometry remains a challenging task. To this end, Old et al. (2009) recently described a strategy that improves the coverage of phosphorylated sites and employed it to identify B-Raf-dependent phosphorylation sites in melanoma cells.


Assuntos
Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Espectrometria de Massas/métodos , Fosforilação , Proteômica/métodos , Transdução de Sinais
18.
Proc Natl Acad Sci U S A ; 105(30): 10402-7, 2008 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-18641122

RESUMO

Phosphorylation of the polarity protein Par-3 by the serine/threonine kinases aPKCzeta/iota and Par-1 (EMK1/MARK2) regulates various aspects of epithelial cell polarity, but little is known about the mechanisms by which these posttranslational modifications are reversed. We find that the serine/threonine protein phosphatase PP1 (predominantly the alpha isoform) binds Par-3, which localizes to tight junctions in MDCKII cells. PP1alpha can associate with multiple sites on Par-3 while retaining its phosphatase activity. By using a quantitative mass spectrometry-based technique, multiple reaction monitoring, we show that PP1alpha specifically dephosphorylates Ser-144 and Ser-824 of mouse Par-3, as well as a peptide encompassing Ser-885. Consistent with these observations, PP1alpha regulates the binding of 14-3-3 proteins and the atypical protein kinase C (aPKC) zeta to Par-3. Furthermore, the induced expression of a catalytically inactive mutant of PP1alpha severely delays the formation of functional tight junctions in MDCKII cells. Collectively, these results show that Par-3 functions as a scaffold, coordinating both serine/threonine kinases and the PP1alpha phosphatase, thereby providing dynamic control of the phosphorylation events that regulate the Par-3/aPKC complex.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteína Fosfatase 1/fisiologia , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular , Linhagem Celular , Cães , Humanos , Camundongos , Modelos Biológicos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Isoformas de Proteínas , Proteína Quinase C-alfa/metabolismo , Serina/química , Junções Íntimas/metabolismo
19.
Cell ; 129(7): 1415-26, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17570479

RESUMO

Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.


Assuntos
Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteômica/métodos , Software , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação/genética , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
20.
Mol Cell Biol ; 25(16): 7092-106, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16055720

RESUMO

WW domains are protein modules that mediate protein-protein interactions through recognition of proline-rich peptide motifs and phosphorylated serine/threonine-proline sites. To pursue the functional properties of WW domains, we employed mass spectrometry to identify 148 proteins that associate with 10 human WW domains. Many of these proteins represent novel WW domain-binding partners and are components of multiprotein complexes involved in molecular processes, such as transcription, RNA processing, and cytoskeletal regulation. We validated one complex in detail, showing that WW domains of the AIP4 E3 protein-ubiquitin ligase bind directly to a PPXY motif in the p68 subunit of pre-mRNA cleavage and polyadenylation factor Im in a manner that promotes p68 ubiquitylation. The tested WW domains fall into three broad groups on the basis of hierarchical clustering with respect to their associated proteins; each such cluster of bound proteins displayed a distinct set of WW domain-binding motifs. We also found that separate WW domains from the same protein or closely related proteins can have different specificities for protein ligands and also demonstrated that a single polypeptide can bind multiple classes of WW domains through separate proline-rich motifs. These data suggest that WW domains provide a versatile platform to link individual proteins into physiologically important networks.


Assuntos
Complexos Multiproteicos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Cromatina/química , Cromatografia Líquida , Análise por Conglomerados , DNA Complementar/metabolismo , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/metabolismo , Humanos , Células Jurkat , Ligantes , Espectrometria de Massas , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/química , Fosforilação , Filogenia , Prolina/química , Ligação Proteica , Estrutura Terciária de Proteína , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Transcrição Gênica , Tripsina/farmacologia , Ubiquitina/química , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA