Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World Neurosurg ; 185: e1268-e1279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514030

RESUMO

OBJECTIVES: Using a laboratory-based optical setup, we show that 5-aminolevulinic acid (5ALA) fluorescence is better detected using the endoscope than the microscope. Furthermore, we present our case series of fully endoscopic 5ALA-guided resection of intraparenchymal tumors. METHODS: A Zeiss Pentero microscope was compared with the Karl Storz Hopkins endoscope. The spectra and intensity of each blue light source were measured. Quantitative fluorescence detection thresholds were measured using a spectrometer. Subjective fluorescence detection thresholds were measured by 6 blinded neuro-oncology surgeons. Clinical data were prospectively collected for all consecutive cases of fully endoscopic 5ALA-guided resection of intraparenchymal tumors between 2012 and 2023. RESULTS: The intensity of blue light on the sample was greater for the endoscope than the microscope at working distances less than 20 mm. The quantitative fluorescence detection thresholds were lower for the endoscope than the microscope at both 30-/10-mm working distances. Fluorescence detection threshold was 0.65%-0.80% relative 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyranthe concentration (3.20 × 10-7 to 3.94 × 10-7mol/dm-3) for the microscope, 0.40%-0.55% relative concentrations (1.97 × 10-7 to 2.71 × 10-7mol/dm-3) for the endoscope at 30 mm, and 0.15%-0.30% relative concentrations (7.40 × 10-8 to 1.48 × 10-7mol/dm-3) for the endoscope at 10 mm. In total, 49 5ALA endoscope-assisted brain tumor resections were carried out on 45 patients (mean age = 41 years, male = 28). Greater than 95% resection was achieved in 80% of cases and gross total resection in 42%. Gross total resection was achieved in 100% of tumors in noneloquent locations. There was 1 new neurologic deficit. CONCLUSIONS: The endoscope provides enhanced visualization/detection of 5ALA-induced fluorescence compared with the microscope. 5ALA endoscopic-assisted resection of intraparenchymal tumors is safe and feasible.


Assuntos
Ácido Aminolevulínico , Neoplasias Encefálicas , Neuroendoscopia , Humanos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Neuroendoscopia/métodos , Neuroendoscopia/instrumentação , Idoso , Adulto , Fármacos Fotossensibilizantes , Fluorescência , Cirurgia Assistida por Computador/métodos , Microscopia/métodos , Microscopia/instrumentação , Procedimentos Neurocirúrgicos/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37830236

RESUMO

Hearing in infants is essential for brain development, acquisition of verbal language skills, and development of social interactions. Therefore, it is important to diagnose hearing loss soon after birth so that interventions can be provided as early as possible. Most newborns in the United States are screened for hearing deficits and commercially available next-generation sequencing hearing loss panels often can identify the causative gene, which may also identify congenital defects in other organs. One of the most prevalent autosomal dominant congenital hearing loss syndromes is branchio-oto-renal syndrome (BOR), which also presents with defects in craniofacial structures and the kidney. Currently, mutations in three genes, SIX1, SIX5, and EYA1, are known to be causative in about half of the BOR patients that have been tested. To uncover new candidate genes that could be added to congenital hearing loss genetic screens, we have combined the power of Drosophila mutants and protein biochemical assays with the embryological advantages of Xenopus, a key aquatic animal model with a high level of genomic similarity to human, to identify potential Six1 transcriptional targets and interacting proteins that play a role during otic development. We review our transcriptomic, yeast 2-hybrid, and proteomic approaches that have revealed a large number of new candidates. We also discuss how we have begun to identify how Six1 and co-factors interact to direct developmental events necessary for normal otic development.

3.
mBio ; 14(5): e0158723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37581442

RESUMO

IMPORTANCE: Pyronaridine tetraphosphate is on the WHO Essential Medicine List for its importance as a widely available and safe treatment for malaria. We find that pyronaridine is a highly effective antiviral therapeutic across mouse models using multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and the highly pathogenic viruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus responsible for previous coronavirus outbreaks. Additionally, we find that pyronaridine additively combines with current COVID-19 treatments such as nirmatrelvir (protease inhibitor in Paxlovid) and molnupiravir to further inhibit SARS-CoV-2 infections. There are many antiviral compounds that demonstrate efficacy in cellular models, but few that show this level of impact in multiple mouse models and represent a promising therapeutic for the current coronavirus pandemic as well as future outbreaks as well.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Camundongos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Naftiridinas/farmacologia , SARS-CoV-2
4.
mBio ; 14(1): e0297322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602307

RESUMO

Gelsolin (GSN) is a structural actin-binding protein that is known to affect actin dynamics in the cell. Using mass spectrometry, we identified GSN as a novel Vpr-interacting protein. Endogenous GSN protein was expressed at detectable levels in monocyte-derived macrophages (MDM) and in THP-1 cells, but it was undetectable at the protein level in other cell lines tested. The HIV-1 infection of MDM was associated with a reduction in GSN steady-state levels, presumably due to the Vpr-induced degradation of GSN. Indeed, the coexpression of GSN and Viral protein R (Vpr) in transiently transfected HEK293T cells resulted in the Vpr-dependent proteasomal degradation of GSN. This effect was observed for Vprs from multiple virus isolates. The overexpression of GSN in HEK293T cells had no effect on Gag expression or particle release, but it reduced the expression and packaging of the HIV-1 envelope (Env) glycoprotein and reduced viral infectivity. An analysis of the HIV-1 splicing patterns did not reveal any GSN-dependent differences, suggesting that the effect of GSN on Env expression was regulated at a posttranscriptional level. Indeed, the treatment of transfected cells with lysosomal inhibitors reversed the effect of GSN on Env stability, suggesting that GSN reduced Env expression via enhanced lysosomal degradation. Our data identify GSN as a macrophage-specific host antiviral factor that reduces the expression of HIV-1 Env. IMPORTANCE Despite dramatic progress in drug therapies, HIV-1 infection remains an incurable disease that affects millions of people worldwide. The virus establishes long-lasting reservoirs that are resistant to currently available drug treatments and allow the virus to rebound whenever drug therapy is interrupted. Macrophages are long-lived cells that are relatively insensitive to HIV-1-induced cytopathicity and thus could contribute to the viral reservoir. Here, we identified a novel host factor, gelsolin, that is expressed at high levels in macrophages and inhibits viral infectivity by modulating the expression of the HIV-1 Env glycoprotein, which is critical in the spread of an HIV-1 infection. Importantly, the viral protein Vpr induces the degradation of gelsolin and thus counteracts its antiviral activity. Our study provides significant and novel insights into HIV-1 virus-host interactions and furthers our understanding of the importance of Vpr in HIV-1 infection and pathogenesis.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Gelsolina/metabolismo , Produtos do Gene env/metabolismo , Células HEK293 , Células Mieloides/metabolismo , Antivirais/metabolismo
5.
Cell Host Microbe ; 31(1): 58-68.e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36459997

RESUMO

Redondoviruses are circular Rep-encoding single-stranded DNA (CRESS) viruses of high prevalence in healthy humans. Redondovirus abundance is increased in oro-respiratory samples from individuals with periodontitis, acute illness, and severe COVID-19. We investigated potential host cells supporting redondovirus replication in oro-respiratory samples and uncovered the oral amoeba Entamoeba gingivalis as a likely host. Redondoviruses are closely related to viruses of Entamoeba and contain reduced GC nucleotide content, consistent with Entamoeba hosts. Redondovirus and E. gingivalis co-occur in metagenomic data from oral disease and healthy human cohorts. When grown in xenic cultures with feeder bacteria, E. gingivalis was robustly positive for redondovirus RNA and DNA. A DNA proximity-ligation assay (Hi-C) on xenic culture cells showed enriched cross-linking of redondovirus and Entamoeba DNA, supporting E. gingivalis as the redondovirus host. While bacteria are established hosts for bacteriophages within the human virome, this work shows that eukaryotic commensals also contribute an abundant human-associated virus.


Assuntos
Bacteriófagos , COVID-19 , Entamoeba , Periodontite , Vírus , Humanos , Entamoeba/genética , Bactérias
6.
Proc Natl Acad Sci U S A ; 119(37): e2204717119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36040867

RESUMO

The ongoing COVID-19 pandemic is a major public health crisis. Despite the development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pandemic persists. The continued spread of the virus is largely driven by the emergence of viral variants, which can evade the current vaccines through mutations in the spike protein. Although these differences in spike are important in terms of transmission and vaccine responses, these variants possess mutations in the other parts of their genome that may also affect pathogenesis. Of particular interest to us are the mutations present in the accessory genes, which have been shown to contribute to pathogenesis in the host through interference with innate immune signaling, among other effects on host machinery. To examine the effects of accessory protein mutations and other nonspike mutations on SARS-CoV-2 pathogenesis, we synthesized both viruses possessing deletions in the accessory genes as well as viruses where the WA-1 spike is replaced by each variant spike gene in a SARS-CoV-2/WA-1 infectious clone. We then characterized the in vitro and in vivo replication of these viruses and compared them to both WA-1 and the full variant viruses. Our work has revealed that the accessory proteins contribute to SARS-CoV-2 pathogenesis and the nonspike mutations in variants can contribute to replication of SARS-CoV-2 and pathogenesis in the host. This work suggests that while spike mutations may enhance receptor binding and entry into cells, mutations in accessory proteins may alter clinical disease presentation.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Proteínas Virais Reguladoras e Acessórias , Virulência , COVID-19/virologia , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Proteínas Virais Reguladoras e Acessórias/genética , Virulência/genética , Replicação Viral/genética
7.
Commun Biol ; 5(1): 808, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962188

RESUMO

The ongoing COVID-19 pandemic has claimed more than 6 million lives and continues to test the world economy and healthcare systems. To combat this pandemic, the biological research community has shifted efforts to the development of medical countermeasures, including vaccines and therapeutics. However, to date, the only small molecules approved for the treatment of COVID-19 in the United States are the nucleoside analogue Remdesivir and the protease inhibitor Paxlovid, though multiple compounds have received Emergency Use Authorization and many more are currently being tested in human efficacy trials. One such compound, Apilimod, is being considered as a COVID-19 therapeutic in a Phase II efficacy trial. However, at the time of writing, there are no published efficacy data in human trials or animal COVID-19 models. Here we show that, while Apilimod and other PIKfyve inhibitors have potent antiviral activity in various cell lines against multiple human coronaviruses, these compounds worsen disease in a COVID-19 murine model when given prophylactically or therapeutically.


Assuntos
Tratamento Farmacológico da COVID-19 , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Pandemias , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteases
9.
Curr Opin Virol ; 55: 101248, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870315

RESUMO

Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.


Assuntos
Anelloviridae , Adulto , Anelloviridae/genética , Humanos
10.
Nature ; 604(7904): 134-140, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35130559

RESUMO

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Assuntos
Antivirais , Avaliação Pré-Clínica de Medicamentos , Nucleosídeos , Pirimidinas , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/virologia , Linhagem Celular , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Nucleosídeos/análogos & derivados , Nucleosídeos/farmacologia , Pirimidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
11.
mBio ; 12(4): e0177721, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399607

RESUMO

Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Here, we investigated the respiratory tract microbiome in coronavirus disease 2019 (COVID-19) and its relationship to disease severity, systemic immunologic features, and outcomes. We examined 507 oropharyngeal, nasopharyngeal, and endotracheal samples from 83 hospitalized COVID-19 patients as well as non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, and the commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR. We found that COVID-19 patients had upper respiratory microbiome dysbiosis and greater change over time than critically ill patients without COVID-19. Oropharyngeal microbiome diversity at the first time point correlated inversely with disease severity during hospitalization. Microbiome composition was also associated with systemic immune parameters in blood, as measured by lymphocyte/neutrophil ratios and immune profiling of peripheral blood mononuclear cells. Intubated patients showed patient-specific lung microbiome communities that were frequently highly dynamic, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Thus, the respiratory tract microbiome and commensal viruses are disturbed in COVID-19 and correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, its possible use as biomarkers, and the role of bacterial and viral taxa identified here in COVID-19 pathogenesis. IMPORTANCE COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of the respiratory tract, results in highly variable outcomes ranging from minimal illness to death, but the reasons for this are not well understood. We investigated the respiratory tract bacterial microbiome and small commensal DNA viruses in hospitalized COVID-19 patients and found that each was markedly abnormal compared to that in healthy people and differed from that in critically ill patients without COVID-19. Early airway samples tracked with the level of COVID-19 illness reached during hospitalization, and the airway microbiome also correlated with immune parameters in blood. These findings raise questions about the mechanisms linking SARS-CoV-2 infection and other microbial inhabitants of the airway, including whether the microbiome might regulate severity of COVID-19 disease and/or whether early microbiome features might serve as biomarkers to discriminate disease severity.


Assuntos
Bactérias/classificação , Disbiose/microbiologia , Pulmão/microbiologia , Nasofaringe/microbiologia , Orofaringe/microbiologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anelloviridae/classificação , Anelloviridae/genética , Anelloviridae/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , COVID-19/patologia , Feminino , Humanos , Contagem de Linfócitos , Masculino , Microbiota , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença
12.
J Virol ; 95(21): e0081721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34406857

RESUMO

Redondoviridae is a newly established family of circular Rep-encoding single-stranded (CRESS) DNA viruses found in the human ororespiratory tract. Redondoviruses were previously found in ∼15% of respiratory specimens from U.S. urban subjects; levels were elevated in individuals with periodontitis or critical illness. Here, we report higher redondovirus prevalence in saliva samples: four rural African populations showed 61 to 82% prevalence, and an urban U.S. population showed 32% prevalence. Longitudinal, limiting-dilution single-genome sequencing revealed diverse strains of both redondovirus species (Brisavirus and Vientovirus) in single individuals, persistence over time, and evidence of intergenomic recombination. Computational analysis of viral genomes identified a recombination hot spot associated with a conserved potential DNA stem-loop structure. To assess the possible role of this site in recombination, we carried out in vitro studies which showed that this potential stem-loop was cleaved by the virus-encoded Rep protein. In addition, in reconstructed reactions, a Rep-DNA covalent intermediate was shown to mediate DNA strand transfer at this site. Thus, redondoviruses are highly prevalent in humans, found in individuals on multiple continents, heterogeneous even within individuals and encode a Rep protein implicated in facilitating recombination. IMPORTANCERedondoviridae is a recently established family of DNA viruses predominantly found in the human respiratory tract and associated with multiple clinical conditions. In this study, we found high redondovirus prevalence in saliva from urban North American individuals and nonindustrialized African populations in Botswana, Cameroon, Ethiopia, and Tanzania. Individuals on both continents harbored both known redondovirus species. Global prevalence of both species suggests that redondoviruses have long been associated with humans but have remained undetected until recently due to their divergent genomes. By sequencing single redondovirus genomes in longitudinally sampled humans, we found that redondoviruses persisted over time within subjects and likely evolve by recombination. The Rep protein encoded by redondoviruses catalyzes multiple reactions in vitro, consistent with a role in mediating DNA replication and recombination. In summary, we identify high redondovirus prevalence in humans across multiple continents, longitudinal heterogeneity and persistence, and potential mechanisms of redondovirus evolution by recombination.


Assuntos
Infecções por Vírus de DNA/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/metabolismo , Boca/virologia , Sistema Respiratório/virologia , Saliva/virologia , África/epidemiologia , Biodiversidade , Estado Terminal , Infecções por Vírus de DNA/epidemiologia , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Genoma Viral , Humanos , Metagenômica , Periodontite/virologia , Filogenia , Prevalência , População Rural , Estados Unidos/epidemiologia , Proteínas Virais/metabolismo
13.
Genome Biol ; 22(1): 169, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082799

RESUMO

BACKGROUND: Rapid spread of SARS-CoV-2 has led to a global pandemic, resulting in the need for rapid assays to allow diagnosis and prevention of transmission. Reverse transcription-polymerase chain reaction (RT-PCR) provides a gold standard assay for SARS-CoV-2 RNA, but instrument costs are high and supply chains are potentially fragile, motivating interest in additional assay methods. Reverse transcription and loop-mediated isothermal amplification (RT-LAMP) provides an alternative that uses orthogonal and often less expensive reagents without the need for thermocyclers. The presence of SARS-CoV-2 RNA is typically detected using dyes to report bulk amplification of DNA; however, a common artifact is nonspecific DNA amplification, which complicates detection. RESULTS: Here we describe the design and testing of molecular beacons, which allow sequence-specific detection of SARS-CoV-2 genomes with improved discrimination in simple reaction mixtures. To optimize beacons for RT-LAMP, multiple locked nucleic acid monomers were incorporated to elevate melting temperatures. We also show how beacons with different fluorescent labels can allow convenient multiplex detection of several amplicons in "single pot" reactions, including incorporation of a human RNA LAMP-BEAC assay to confirm sample integrity. Comparison of LAMP-BEAC and RT-qPCR on clinical saliva samples showed good concordance between assays. To facilitate implementation, we developed custom polymerases for LAMP-BEAC and inexpensive purification procedures, which also facilitates increasing sensitivity by increasing reaction volumes. CONCLUSIONS: LAMP-BEAC thus provides an affordable and simple SARS-CoV-2 RNA assay suitable for population screening; implementation of the assay has allowed robust screening of thousands of saliva samples per week.


Assuntos
COVID-19/diagnóstico , RNA Viral/genética , SARS-CoV-2/isolamento & purificação , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Sondas de Ácido Nucleico/genética , SARS-CoV-2/genética , Saliva/virologia , Sensibilidade e Especificidade
14.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958399

RESUMO

We report the genome of a circular replication-associated protein (Rep)-encoding segmented or satellite virus, which we have provisionally named rengasvirus. In metagenomic studies of virus-enriched fractions, rengasvirus was detected widely, including in reagent-negative controls. We thus report this genome to help others recognize a probable contaminating sequence.

15.
medRxiv ; 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33851179

RESUMO

Rationale: Viral infection of the respiratory tract can be associated with propagating effects on the airway microbiome, and microbiome dysbiosis may influence viral disease. Objective: To define the respiratory tract microbiome in COVID-19 and relationship disease severity, systemic immunologic features, and outcomes. Methods and Measurements: We examined 507 oropharyngeal, nasopharyngeal and endotracheal samples from 83 hospitalized COVID-19 patients, along with non-COVID patients and healthy controls. Bacterial communities were interrogated using 16S rRNA gene sequencing, commensal DNA viruses Anelloviridae and Redondoviridae were quantified by qPCR, and immune features were characterized by lymphocyte/neutrophil (L/N) ratios and deep immune profiling of peripheral blood mononuclear cells (PBMC). Main Results: COVID-19 patients had upper respiratory microbiome dysbiosis, and greater change over time than critically ill patients without COVID-19. Diversity at the first time point correlated inversely with disease severity during hospitalization, and microbiome composition was associated with L/N ratios and PBMC profiles in blood. Intubated patients showed patient-specific and dynamic lung microbiome communities, with prominence of Staphylococcus. Anelloviridae and Redondoviridae showed more frequent colonization and higher titers in severe disease. Machine learning analysis demonstrated that integrated features of the microbiome at early sampling points had high power to discriminate ultimate level of COVID-19 severity. Conclusions: The respiratory tract microbiome and commensal virome are disturbed in COVID-19, correlate with systemic immune parameters, and early microbiome features discriminate disease severity. Future studies should address clinical consequences of airway dysbiosis in COVID-19, possible use as biomarkers, and role of bacterial and viral taxa identified here in COVID-19 pathogenesis.

16.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258767

RESUMO

Viruses in the family Redondoviridae have a circular genome of 3.0 kb with three open reading frames. The packaged genome is inferred to be single-stranded DNA by analogy to related viruses. Redondoviruses were discovered through metagenomic sequencing methods in samples from human subjects and are inferred to replicate in humans. Evidence of redondovirus infection is associated with periodontitis and critical illness, but redondoviruses have not been shown to be the causative agent of any diseases. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Redondoviridae, which is available at ictv.global/report/redondoviridae.


Assuntos
Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/patogenicidade , Vírus de DNA/fisiologia , DNA Circular , DNA de Cadeia Simples , DNA Viral , Genoma Viral/genética , Humanos , Metagenômica , Fases de Leitura Aberta , Replicação Viral
17.
Genome Biol ; 21(1): 122, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450885

RESUMO

BACKGROUND: African populations provide a unique opportunity to interrogate host-microbe co-evolution and its impact on adaptive phenotypes due to their genomic, phenotypic, and cultural diversity. We integrate gut microbiome 16S rRNA amplicon and shotgun metagenomic sequence data with quantification of pathogen burden and measures of immune parameters for 575 ethnically diverse Africans from Cameroon. Subjects followed pastoralist, agropastoralist, and hunter-gatherer lifestyles and were compared to an urban US population from Philadelphia. RESULTS: We observe significant differences in gut microbiome composition across populations that correlate with subsistence strategy and country. After these, the variable most strongly associated with gut microbiome structure in Cameroonians is the presence of gut parasites. Hunter-gatherers have high frequencies of parasites relative to agropastoralists and pastoralists. Ascaris lumbricoides, Necator americanus, Trichuris trichiura, and Strongyloides stercoralis soil-transmitted helminths ("ANTS" parasites) significantly co-occur, and increased frequency of gut parasites correlates with increased gut microbial diversity. Gut microbiome composition predicts ANTS positivity with 80% accuracy. Colonization with ANTS, in turn, is associated with elevated levels of TH1, TH2, and proinflammatory cytokines, indicating an association with multiple immune mechanisms. The unprecedented size of this dataset allowed interrogation of additional questions-for example, we find that Fulani pastoralists, who consume high levels of milk, possess an enrichment of gut bacteria that catabolize galactose, an end product of lactose metabolism, and of bacteria that metabolize lipids. CONCLUSIONS: These data document associations of bacterial microbiota and eukaryotic parasites with each other and with host immune responses; each of these is further correlated with subsistence practices.


Assuntos
Fazendeiros/estatística & dados numéricos , Microbioma Gastrointestinal , Interações Hospedeiro-Parasita/imunologia , Nematoides/fisiologia , Carga Parasitária , Animais , Camarões , Dieta Paleolítica , Humanos , Estilo de Vida , Aprendizado de Máquina , Metagenoma , RNA Ribossômico 16S/genética
18.
Bioinformatics ; 36(11): 3607-3609, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154830

RESUMO

SUMMARY: High-throughput sequencing is a powerful technique for addressing biological questions. Grabseqs streamlines access to publicly available metagenomic data by providing a single, easy-to-use interface to download data and metadata from multiple repositories, including the Sequence Read Archive, the Metagenomics Rapid Annotation through Subsystems Technology server and iMicrobe. Users can download data and metadata in a standardized format from any number of samples or projects from a given repository with a single grabseqs command. AVAILABILITY AND IMPLEMENTATION: Grabseqs is an open-source tool implemented in Python and licensed under the MIT license. The source code is freely available at https://github.com/louiejtaylor/grabseqs, the Python Package Index and Anaconda Cloud repository. CONTACT: bushman@pennmedicine.upenn.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metadados , Metagenoma , Metagenômica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA