Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 34, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422145

RESUMO

BACKGROUND: Gyrodactylus salaris Malmberg, 1957 is an OIE (Office International des Epizooties)-listed parasitic pathogen and had until the current study been reported from 19 countries across Europe, although many of these records require confirmation. The last comprehensive evaluation regarding the distribution of G. salaris, however, was made in 2007, although some of the states identified as being G. salaris-positive were ascribed this status based on misidentifications, on partial data resulting from either morphological or molecular tests, or from records that have not been revisited since their early reporting. It is thus important to go through the reports on G. salaris to obtain a status for each country. METHODS: To provide a revised update of the G. salaris distribution, a literature review was necessary. This literature, however, was not always readily accessible and, in certain cases, the article only made superficial reference to the parasite without providing details or data to support the identification. In most cases, the original specimens were not deposited in a national collection. Additional Gyrodactylus material for the current study was obtained from selected salmonid populations with the aim to contribute to current understanding regarding the distribution of G. salaris. Additional parasite material collected for this study was processed following standard procedures for species identification in Gyrodactylus [1]. RESULTS: From the work conducted in the current study, G. salaris is reported from a further three regions in Italy, alongside three other species, and appears to occur extensively throughout central Italy without causing significant mortalities to its rainbow trout, Oncorhynchus mykiss (Walbaum), host. The analysis of archive material from G. salaris-positive farms would suggest that G. salaris has been in this country since at least 2000. Material obtained from rainbow trout from Finland and Germany are confirmed as G. salaris, supporting existing data for these countries. No specimens of G. salaris, however, were found in the additional Gyrodactylus material obtained from rainbow trout reared in Portugal and Spain. A morphologically similar species, Gyrodactylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999, however, was found. CONCLUSIONS: Following the present review, Gyrodactylus salaris is reported from 23 out of 50 recognised states throughout Europe; only records from 14 of these states have been confirmed by either morphology and/or by an appropriate molecular test and are considered valid, while only nine of these records have been confirmed by a combination of both methods.


Assuntos
Trematódeos , Infecções por Trematódeos/parasitologia , Animais , Europa (Continente)/epidemiologia , Trematódeos/anatomia & histologia , Trematódeos/classificação , Trematódeos/genética , Infecções por Trematódeos/epidemiologia
2.
J Immunol ; 193(5): 2273-86, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25080482

RESUMO

Fish type I IFNs are classified into two groups with two (group I) or four (group II) cysteines in the mature peptide and can be further divided into four subgroups, termed IFN-a, -b, -c, and -d. Salmonids possess all four subgroups, whereas other teleost species have one or more but not all groups. In this study, we have discovered two further subgroups (IFN-e and -f) in rainbow trout Oncorhynchus mykiss and analyzed the expression of all six subgroups in rainbow trout and brown trout Salmo trutta. In rainbow trout RTG-2 and RTS-11 cells, polyinosinic-polycytidylic acid stimulation resulted in early activation of IFN-d, whereas the IFN-e subgroup containing the highest number of members showed weak induction. In contrast with the cell lines, remarkable induction of IFN-a, -b, and -c was detected in primary head kidney leukocytes after polyinosinic-polycytidylic acid treatment, whereas a moderate increase of IFNs was observed after stimulation with resiquimod. Infection of brown trout with hemorrhagic septicemia virus resulted in early induction of IFN-d, -e, and -f and a marked increase of IFN-b and IFN-c expression in kidney and spleen. IFN transcripts were found to be strongly correlated with the viral burden and with marker genes of the IFN antiviral cascade. The results demonstrate that the IFN system of salmonids is far more complex than previously realized, and in-depth research is required to fully understand its regulation and function.


Assuntos
Proteínas de Peixes/genética , Loci Gênicos/fisiologia , Interferon Tipo I/genética , Oncorhynchus mykiss/genética , Animais , Sequência de Bases , Proteínas de Peixes/imunologia , Interferon Tipo I/imunologia , Dados de Sequência Molecular , Oncorhynchus mykiss/imunologia , Especificidade de Órgãos/fisiologia
3.
Vet Parasitol ; 186(3-4): 237-44, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22154252

RESUMO

Ichthyophthirius multifiliis Fouquet, 1876 infections on intensively reared fish stocks can increase rapidly, which if left unmanaged, can result in the heavy loss of stock. The present study explores the efficacy of long duration, low dose (1, 2 and 5 mg L(-1)) treatments of bronopol (marketed as Pyceze™, Novartis Ltd.) in reducing the number of trophonts establishing on juvenile Oncorhynchus mykiss held under small scale culture conditions. The effect of bronopol on the colonisation success of infective theronts was also investigated by adding 2 mg L(-1) bronopol to the water prior and during the infection process. The number of parasites surviving on fish treated this way was compared to groups of fish that only received treatment after infection had occurred. The effect of bronopol on exiting trophonts throughout their external development to the point of theront release was also assessed through the delivery of 1 mg L(-1), 2 mg L(-1) and 5 mg L(-1) bronopol for up to 27 days consecutively (days 9-36 post-infection). The trial showed that a nominal dose of 2 mg L(-1) bronopol administered prior to infection significantly reduced the number of theronts surviving in the water column at the time of the initial challenge by 35-40% (P<0.05). Similarly, doses of 2 and 5 mg L(-1) bronopol administered as the first wave of mature I. multifiliis trophonts exited fish (i.e. day 11 onwards) to develop externally, reduced the number of trophonts establishing on fish as the second cycle of infection by 52-83%. Continuous application of 2 and 5 mg L(-1) bronopol throughout the second and third cycles of I. multifiliis infection gave further reductions of between 90 and 98%. The number of trophonts on the fish in the control tanks and those treated with 1 mg L(-1) and the 2 mg L(-1) dose at the time of initial infection, by comparison, were observed to increase with successive cycles of infection. From these small scale tank trials, this study demonstrates that the strategic, long duration, low dose delivery of drugs like bronopol can significantly reduce the number of trophonts establishing on fish suggesting the potential of this drug at managing I. multifiliis infections.


Assuntos
Infecções por Cilióforos/veterinária , Cilióforos/efeitos dos fármacos , Doenças dos Peixes/tratamento farmacológico , Oncorhynchus mykiss , Propilenoglicóis/administração & dosagem , Propilenoglicóis/uso terapêutico , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/uso terapêutico , Infecções por Cilióforos/tratamento farmacológico , Relação Dose-Resposta a Droga , Esquema de Medicação , Doenças dos Peixes/parasitologia
4.
Vet Parasitol ; 186(3-4): 229-36, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22153260

RESUMO

Pyceze™ (Novartis Animal Vaccines Ltd.) is licensed as a veterinary medicine to treat fungal infections in salmon, trout and their eggs. The active ingredient is bronopol, which due to its broad-spectrum activity has the potential to be an effective treatment against other important aquatic pathogens. In this study the efficacy of bronopol against Ichthyophthirius multifiliis was tested both in vitro and in vivo. In vitro trials demonstrated a 30 min exposure to 100 mg L(-1) bronopol killed 51.7% of the infective theronts. In vitro exposure of the protomonts to bronopol (0, 20, 50 and 100 mg L(-1)) for 30 min was observed to kill 0%, 76.2%, 97.2% and 100% respectively. Protomonts surviving treatment, demonstrated delayed development with the time taken from protomont until the release of theronts ranging from 28.3h for 0 mg L(-1) exposure, to 70 h for parasites in 20 and 50 mg L(-1) exposure groups. These concentrations also caused asymmetric cell division of the encysted tomonts. Exposure of encysted tomonts (min. 8 cell stage) to 100 mg L(-1) bronopol for 30 min, killed 50% within this period, with the remainder dying within the subsequent 42 h post exposure. Lower doses of bronopol were less effective in killing encysted tomonts than the higher doses (3.3% of parasites were killed in 20 mg L(-1); 10% in 50 mg L(-1)), but they still delayed theront release significantly (25.7 h for 0 mg L(-1) to 46.2h for parasites exposed to 20-50 mg L(-1)). Long, low dose (1 mg L(-1)) exposure to bronopol was also efficacious against theronts. Survival after 12h was 29% (c.f. 100% in control parasites), and <1% after 24 h exposure (c.f. 74% in control parasites). Theronts surviving these exposures demonstrated reduced infection success compared to control theronts. The findings of this study demonstrate that bronopol (Pyceze™) affects the survival of all free-living stages of I. multifiliis (protomonts, tomont and theronts), thus suggesting that bronopol may serve a useful role in the control of I. multifiliis infections.


Assuntos
Anti-Infecciosos/farmacologia , Cilióforos/efeitos dos fármacos , Cilióforos/fisiologia , Propilenoglicóis/farmacologia , Animais , Infecções por Cilióforos/tratamento farmacológico , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Relação Dose-Resposta a Droga , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Oncorhynchus mykiss
5.
Vet Res ; 42: 94, 2011 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-21834990

RESUMO

Over recent years the growth in aquaculture, accompanied by the emergence of new and transboundary diseases, has stimulated epidemiological studies of aquatic animal diseases. Great potential exists for both observational and theoretical approaches to investigate the processes driving emergence but, to date, compared to terrestrial systems, relatively few studies exist in aquatic animals. Research using risk methods has assessed routes of introduction of aquatic animal pathogens to facilitate safe trade (e.g. import risk analyses) and support biosecurity. Epidemiological studies of risk factors for disease in aquaculture (most notably Atlantic salmon farming) have effectively supported control measures. Methods developed for terrestrial livestock diseases (e.g. risk-based surveillance) could improve the capacity of aquatic animal surveillance systems to detect disease incursions and emergence. The study of disease in wild populations presents many challenges and the judicious use of theoretical models offers some solutions. Models, parameterised from observational studies of host pathogen interactions, have been used to extrapolate estimates of impacts on the individual to the population level. These have proved effective in estimating the likely impact of parasite infections on wild salmonid populations in Switzerland and Canada (where the importance of farmed salmon as a reservoir of infection was investigated). A lack of data is often the key constraint in the application of new approaches to surveillance and modelling. The need for epidemiological approaches to protect aquatic animal health will inevitably increase in the face of the combined challenges of climate change, increasing anthropogenic pressures, limited water sources and the growth in aquaculture.


Assuntos
Doenças Transmissíveis Emergentes/veterinária , Monitoramento Epidemiológico/veterinária , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/etiologia , Animais , Aquicultura , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/etiologia , Doenças Transmissíveis Emergentes/transmissão , Doenças dos Peixes/transmissão , Peixes , Medição de Risco , Fatores de Risco , Frutos do Mar/microbiologia , Frutos do Mar/parasitologia , Frutos do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA