Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Phys Chem Lett ; 14(50): 11333-11341, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38064364

RESUMO

Lead Mixed Halide Perovskites (LMHPs), CsPbBrI2, have attracted significant interest as promising candidates for wide bandgap absorber layers in tandem solar cells due to their relative stability and red-light emission with a bandgap ∼1.7 eV. However, these materials segregate into Br-rich and I-rich domains upon continuous illumination, affecting their optical properties and compromising the operational stability of devices. Herein, we track the microscopic processes occurring during halide segregation by using combined spectroscopic measurements at room and cryogenic temperatures. We also evaluate a passivation strategy to mitigate the halide migration of Br/I ions in the films by overcoating with cyclic olefin copolymer (COC). Our results explain the correlation between grain size, intensity dependencies, phase segregation, activation energy barrier, and their influence on photoinduced carrier lifetimes. Importantly, COC treatment increases the lifetime charge carriers in mixed halide thin films, improving efficient charge transport in perovskite solar cell applications.

2.
Light Sci Appl ; 12(1): 285, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001058

RESUMO

Optical gain enhancement of two-dimensional CsPbBr3 nanosheets was studied when the amplified spontaneous emission is guided by a patterned structure of polyurethane-acrylate. Given the uncertainties and pitfalls in retrieving a gain coefficient from the variable stripe length method, a gain contour [Formula: see text] was obtained in the plane of spectrum energy (ℏω) and stripe length (x), whereby an average gain was obtained, and gain saturation was analysed. Excitation and temperature dependence of the gain contour show that the waveguide enhances both gain and thermal stability due to the increased optical confinement and heat dissipation, and the gain origins were attributed to the two-dimensional excitons and the localized states.

3.
Nano Lett ; 23(23): 10667-10673, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38016047

RESUMO

Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.

4.
Phys Rev Lett ; 130(8): 083602, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898105

RESUMO

We demonstrate that semiconductor quantum dots can be excited efficiently in a resonant three-photon process, while resonant two-photon excitation is highly suppressed. Time-dependent Floquet theory is used to quantify the strength of the multiphoton processes and model the experimental results. The efficiency of these transitions can be drawn directly from parity considerations in the electron and hole wave functions in semiconductor quantum dots. Finally, we exploit this technique to probe intrinsic properties of InGaN quantum dots. In contrast to nonresonant excitation, slow relaxation of charge carriers is avoided, which allows us to measure directly the radiative lifetime of the lowest energy exciton states. Since the emission energy is detuned far from the resonant driving laser field, polarization filtering is not required and emission with a greater degree of linear polarization is observed compared to nonresonant excitation.

6.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839084

RESUMO

The optical modal gain of Cd0.6Zn0.4Te/ZnTe double quantum dots was measured using a variable stripe length method, where large and small quantum dots are separated with a ZnTe layer. With a large (~18 nm) separation layer thickness of ZnTe, two gain spectra were observed, which correspond to the confined exciton levels of the large and small quantum dots, respectively. With a small (~6 nm) separation layer thickness of ZnTe, a merged single gain spectrum was observed. This can be attributed to a coupled state between large and small quantum dots. Because the density of large quantum dots (4 × 1010 cm-2) is twice the density of small quantum dots (2 × 1010 cm-2), the density of the coupled quantum dots is determined by that of small quantum dots. As a result, we found that the peak gain (123.9 ± 9.2 cm-1) with the 6 nm separation layer is comparable to that (125.2 ± 29.2 cm-1) of the small quantum dots with the 18 nm separation layer.

7.
ACS Nano ; 17(4): 3289-3300, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790329

RESUMO

Halide perovskite light-emitting diodes (PeLEDs) exhibit great potential for use in next-generation display technologies. However, scale-up will be challenging due to the requirement of very thin transport layers for high efficiencies, which often present spatial inhomogeneities from improper wetting and drying during solution processing. Here, we show how a thin Al2O3 layer grown by atomic layer deposition can be used to preferentially cover regions of imperfect hole transport layer deposition and form an intermixed composite with the organic transport layer, allowing hole conduction and injection to persist through the organic hole transporter. This has the dual effect of reducing nonradiative recombination at the heterojunction and improving carrier selectivity, which we infer to be due to the inhibition of direct contact between the indium tin oxide and perovskite layers. We observe an immediate improvement in electroluminescent external quantum efficiency in our p-i-n LEDs from an average of 9.8% to 13.5%, with a champion efficiency of 15.0%. The technique uses industrially available equipment and can readily be scaled up to larger areas and incorporated in other applications such as thin-film photovoltaic cells.

8.
Ultrasound Med Biol ; 49(4): 961-969, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36669943

RESUMO

Although microbubbles are used primarily in the medical industry as ultrasonic contrast agents, they can also be manipulated by acoustic waves for targeted drug delivery, sonothrombolysis and sonoporation. Acoustic waves can also potentially remove microbubbles from tubing systems (e.g., in hemodialysis) to prevent the negative effects associated with circulating microbubbles. A deeper understanding of the interactions between the acoustic radiation force, the microbubble and the channel wall could greatly benefit these applications. In this study, single air-filled microbubbles were injected into a flowing (polydimethylsiloxane) channel and monitored by a high-speed camera while passing through a pulsed ultrasonic wave zone (0.5 MHz). This study compared various bubble sizes, flow rates and acoustic pressure amplitudes to better understand the three physical regimes observed: free bubble translation (away from the wall); on-wall translation; and bubble-wall attachment. Comparison with a theoretical model revealed that the acoustic radiation force needs to exceed the combined repulsive forces (shear lift, wall lubrication and repulsive Van der Waal forces) for the dead state of bubble-wall attachment. The bubble dynamics revealed through this investigation provide an opportunity for efficient positioning of microbubbles in a channel flow, for either in vivo manipulation or removal in biological applications.


Assuntos
Microbolhas , Ultrassom , Som , Acústica , Meios de Contraste , Ondas Ultrassônicas
9.
Microsyst Nanoeng ; 8: 98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119375

RESUMO

As a new concept in materials design, a variety of strategies have been developed to fabricate optical microlens arrays (MLAs) that enable the miniaturization of optical systems on the micro/nanoscale to improve their characteristic performance with unique optical functionality. In this paper, we introduce a cost-effective and facile fabrication process on a large scale up to ~15 inches via sequential lithographic methods to produce thin and deformable hexagonally arranged MLAs consisting of polydimethylsiloxane (PDMS). Simple employment of oxygen plasma treatment on the prestrained MLAs effectively harnessed the spontaneous formation of highly uniform nanowrinkled structures all over the surface of the elastomeric microlenses. With strain-controlled tunability, unexpected optical diffraction patterns were characterized by the interference combination effect of the microlens and deformable nanowrinkles. Consequently, the hierarchically structured MLAs presented here have the potential to produce desirable spatial arrangements, which may provide easily accessible opportunities to realize microlens-based technology by tunable focal lengths for more advanced micro-optical devices and imaging projection elements on unconventional security substrates.

10.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616094

RESUMO

Localized states in an anisotropic single GaAs quantum ring were investigated in terms of polarization dependence of micro-photoluminescence spectrum at 5K. Given four Stokes parameters measured with a pair of linear polarizers and waveplates, the elliptical polarization states of two different vertical confinement states (k=1 and k=2) were compared with phase, rotation, and ellipticity angles. While the polarized emission intensity of the k=2 states becomes enhanced along [1,1,0] compared to that along [1,1¯,0], the polarization asymmetry of the k=1 states shows the opposite result. We conclude the polarization state is determined by the shape of the lateral wavefunctions. In the k=2 state, crescent-like wavefunctions are strongly localized, but the k=1 state consists of two crescent-like wavefunctions, which are connected weakly through quantum tunneling.

11.
Opt Express ; 29(22): 35161-35171, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808955

RESUMO

We have designed a method of harvesting electrical energy using plasmon-enhanced light pressure. A device was fabricated as a cut cone structure that optimizes light collection so that the weak incident light pressure can be sufficiently enhanced inside the cut cone to generate electrical energy. An increase in the device's current output is a strong indication that the pressure of incident light has been enhanced by the surface plasmons on a platinum layer inside the cut cone. The electrical energy harvested in a few minutes by irradiating pulsed laser light on a single micro device was possible to illuminate a blue LED.

12.
ACS Photonics ; 8(9): 2699-2704, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34557568

RESUMO

The surprising recent observation of highly emissive triplet-states in lead halide perovskites accounts for their orders-of-magnitude brighter optical signals and high quantum efficiencies compared to other semiconductors. This makes them attractive for future optoelectronic applications, especially in bright low-threshold nanolasers. While nonresonantly pumped lasing from all-inorganic lead-halide perovskites is now well-established as an attractive pathway to scalable low-power laser sources for nano-optoelectronics, here we showcase a resonant optical pumping scheme on a fast triplet-state in CsPbBr3 nanocrystals. The scheme allows us to realize a polarized triplet-laser source that dramatically enhances the coherent signal by 1 order of magnitude while suppressing noncoherent contributions. The result is a source with highly attractive technological characteristics, including a bright and polarized signal and a high stimulated-to-spontaneous emission signal contrast that can be filtered to enhance spectral purity. The emission is generated by pumping selectively on a weakly confined excitonic state with a Bohr radius ∼10 nm in the nanocrystals. The exciton fine-structure is revealed by the energy-splitting resulting from confinement in nanocrystals with tetragonal symmetry. We use a linear polarizer to resolve 2-fold nondegenerate sublevels in the triplet exciton and use photoluminescence excitation spectroscopy to determine the energy of the state before pumping it resonantly.

13.
Nano Lett ; 21(12): 5217-5224, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34086468

RESUMO

Crystallographic point defects (PDs) can dramatically decrease the efficiency of optoelectronic semiconductor devices, many of which are based on quantum well (QW) heterostructures. However, spatially resolving individual nonradiative PDs buried in such QWs has so far not been demonstrated. Here, using high-resolution cathodoluminescence (CL) and a specific sample design, we spatially resolve, image, and analyze nonradiative PDs in InGaN/GaN QWs at the nanoscale. We identify two different types of PDs by their contrasting behavior with temperature and measure their densities from 1014 cm-3 to as high as 1016 cm-3. Our CL images clearly illustrate the interplay between PDs and carrier dynamics in the well: increasing PD concentration severely limits carrier diffusion lengths, while a higher carrier density suppresses the nonradiative behavior of PDs. The results in this study are readily interpreted directly from CL images and represent a significant advancement in nanoscale PD analysis.

14.
Biomicrofluidics ; 15(1): 014111, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33643513

RESUMO

The need for cell and particle sorting in human health care and biotechnology applications is undeniable. Inertial microfluidics has proven to be an effective cell and particle sorting technology in many of these applications. Still, only a limited understanding of the underlying physics of particle migration is currently available due to the complex inertial and impact forces arising from particle-particle and particle-wall interactions. Thus, even though it would likely enable significant advances in the field, very few studies have tried to simulate particle-laden flows in inertial microfluidic devices. To address this, this study proposes new codes (solved in OpenFOAM software) that capture all the salient inertial forces, including the four-way coupling between the conveying fluid and the suspended particles traveling a spiral microchannel. Additionally, these simulations are relatively (computationally) inexpensive since the arbitrary Lagrangian-Eulerian formulation allows the fluid elements to be much larger than the particles. In this study, simulations were conducted for two different spiral microchannel cross sections (e.g., rectangular and trapezoidal) for comparison against previously published experimental results. The results indicate good agreement with experiments in terms of (monodisperse) particle focusing positions, and the codes can readily be extended to simulate two different particle types. This new numerical approach is significant because it opens the door to rapid geometric and flow rate optimization in order to improve the efficiency and purity of cell and particle sorting in biotechnology applications.

15.
Sci Total Environ ; 767: 144181, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450590

RESUMO

Ultra-low pressure gravity-driven membrane (GDM) systems have the potential to be significantly less costly and complex than conventional membranes for water treatment applications. To build upon this inherent advantage, this study assesses the reuse of recycled membranes in GDM systems for producing drinking water. Two reverse osmosis spiral-wound modules were recycled into nanofiltration (NF)-like and ultrafiltration (UF)-like membranes via controlled exposure to free chlorine. To operate the recycled membranes, two housing devices, based on a simple fitting and an advanced end-caps design, were developed. The recycled membrane systems were tested under a range of conditions (submerged vs. external system configuration and continuous vs. intermittent filtration mode). Synthetic river water feed solutions were used in the tests where performance, fouling, and clogging were measured. NF-like recycled membranes resulted in poor salt rejection and low permeability (~1.7 L m-2 h-1 bar-1), but also in high rejection (>81%) of dissolved organic carbon. UF-like recycled membranes maintained their capacity to reject biopolymers (BP) (>74%) and featured up to 18-fold higher permeate rate than NF-like recycled membranes. The optimized operating conditions were found when the recycled membranes were housed in the end-caps device and operated intermittently (relaxation time plus forward flushing). Flushing reduced the fouling accumulation inside the membrane (only 12% and 40% of BP accumulation was observed in the NF-like and UF-like, respectively). However, the end-caps-based device was estimated to be more expensive during the economic analysis. To address this techno-economic trade-off, a decision-making tree was developed to select the appropriate configuration based upon the implementation context. Overall, this study concludes that these designs can serve as robust, low-cost (water production cost <1 USD ct. yr. L-1), and light-weight GDM alternatives. This study is beneficial for developing compact GDM systems based on recycled spiral-wound membranes for both rural areas and emergency response.

16.
Biomicrofluidics ; 14(6): 064106, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33269035

RESUMO

A hydrocyclone is a macroscale separation device employed in various industries, with many advantages, including high-throughput and low operational costs. Translating these advantages to microscale has been a challenge due to the microscale fabrication limitations that can be surmounted using 3D printing technology. Additionally, it is difficult to simulate the performance of real 3D-printed micro-hydrocyclones because of turbulent eddies and the deviations from the design due to printing resolution. To address these issues, we propose a new experimental method for the direct observation of particle motion in 3D printed micro-hydrocyclones. To do so, wax 3D printing and soft lithography were used in combination to construct a transparent micro-hydrocyclone in a single block of polydimethylsiloxane. A high-speed camera and fluorescent particles were employed to obtain clear in situ images and to confirm the presence of the vortex core. To showcase the use of this method, we demonstrate that a well-designed device can achieve a 95% separation efficiency for a sample containing a mixture of (desired) stem cells and (undesired) microcarriers. Overall, we hope that the proposed method for the direct visualization of particle trajectories in micro-hydrocyclones will serve as a tool, which can be leveraged to accelerate the development of micro-hydrocyclones for biomedical applications.

17.
Light Sci Appl ; 9: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566170

RESUMO

We find that the emission from laterally coupled quantum dots is strongly polarized along the coupled direction [1 1 ¯ 0], and its polarization anisotropy can be shaped by changing the orientation of the polarized excitation. When the nonresonant excitation is linearly polarized perpendicular to the coupled direction [110], excitons (X1 and X2) and local biexcitons (X1X1 and X2X2) from the two separate quantum dots (QD1 and QD2) show emission anisotropy with a small degree of polarization (10%). On the other hand, when the excitation polarization is parallel to the coupled direction [1 1 ¯ 0], the polarization anisotropy of excitons, local biexcitons, and coupled biexcitons (X1X2) is enhanced with a degree of polarization of 74%. We also observed a consistent anisotropy in the time-resolved photoluminescence. The decay rate of the polarized photoluminescence intensity along the coupled direction is relatively high, but the anisotropic decay rate can be modified by changing the orientation of the polarized excitation. An energy difference is also observed between the polarized emission spectra parallel and perpendicular to the coupled direction, and it increases by up to three times by changing the excitation polarization orientation from [110] to [1 1 ¯ 0]. These results suggest that the dipole-dipole interaction across the two separate quantum dots is mediated and that the anisotropic wavefunctions of the excitons and biexcitons are shaped by the excitation polarization.

18.
IEEE Rev Biomed Eng ; 13: 261-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31395552

RESUMO

Globally, around 2.6 million people receive renal replacement therapy (RRT), and a further 4.9-9.7 million people need, but do not have access to, RRT [1]. The next generation RRT devices will certainly be in demand due to the increasing occurrence of diabetes, atherosclerosis and the growing population of older citizens. This review provides a comprehensive, yet concise overview of the cleared and remaining hurdles in the development of artificial kidneys to move beyond traditional dialysis technology-the current baseline of renal failure treatment. It compares and contrasts the state-of-the-art in 'cell-based' and 'non-cell-based' approaches. Based on this study, a new engineering perspective on the future of artificial kidneys is described. This review suggests that stem-cell-based artificial kidneys represent a long-term, complete solution but it can take years of development due to the limitations of current cell seeding technology, viability and complicated behaviour control. Alternatively, there is much potential for near- and medium- term solutions with the development of non-cell-based wearable and implantable devices to support current therapies. Based on recent fundamental advances in microfluidics, membranes and related research, it may be possible to integrate these technologies to enable implantable artificial kidneys (iAK) in the near future.


Assuntos
Rins Artificiais , Membranas Artificiais , Microfluídica , Animais , Humanos , Ratos , Terapia de Substituição Renal
19.
Nat Commun ; 10(1): 4421, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562317

RESUMO

Photocatalytic water splitting is attracting enormous interest for the storage of solar energy but no practical method has yet been identified. In the past decades, various systems have been developed but most of them suffer from low activities, a narrow range of absorption and poor quantum efficiencies (Q.E.) due to fast recombination of charge carriers. Here we report a dramatic suppression of electron-hole pair recombination on the surface of N-doped TiO2 based nanocatalysts under enhanced concentrations of H+ and OH-, and local electric field polarization of a MgO (111) support during photolysis of water at elevated temperatures. Thus, a broad optical absorption is seen, producing O2 and H2 in a 1:2 molar ratio with a H2 evolution rate of over 11,000 µmol g-1 h-1 without any sacrificial reagents at 270 °C. An exceptional range of Q.E. from 81.8% at 437 nm to 3.2% at 1000 nm is also reported.

20.
Biomicrofluidics ; 13(3): 034117, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31431813

RESUMO

Inertial microfluidics represents a powerful new tool for accurately positioning cells and microparticles within fluids for a variety of biomedical, clinical, and industrial applications. In spite of enormous advancements in the science and design of these devices, particularly in curved microfluidic channels, contradictory experimental results have confounded researchers and limited progress. Thus, at present, a complete theory which describes the underlying physics is lacking. We propose that this bottleneck is due to one simple mistaken assumption-the locations of inflection points of the Dean velocity profile in curved microchannels are not fixed, but can actually shift with the flow rate. Herein, we propose that the dynamic distance (δ) between the real equilibrium positions and their nearest inflection points can clearly explain several (previously) unexplained phenomena in inertial microfluidic systems. More interestingly, we found that this parameter, δ, is a function of several geometric and operational parameters, all of which are investigated (in detail) here with a series of experiments and simulations of different spiral microchannels. This key piece of understanding is expected to open the door for researchers to develop new and more effective inertial microfluidic designs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA