Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 30(11): 2101-2115, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32762021

RESUMO

High-load eccentric training reputedly produces greater muscle hypertrophy than concentric training, possibly due to greater loading and/or inflammation. We quantified the temporal impact of combined maximal concentric-eccentric training vs maximal concentric training on muscle cross-sectional area (CSA), volume, and targeted mRNA expression (93 transcripts). Eight recreationally active males (24 ± 5 years, BMI 23.5 ± 2.5 kg/m2 ) performed 3 x 30 maximal eccentric isokinetic knee extensions and 2 x 30 maximal concentric knee extensions in dominant limb (ECC + CON) and 5 x 30 maximal concentric contractions (CON) in the non-dominant limb for 12 weeks (all 90°/s, 3x/wk). Quadriceps muscle CSA and volume were measured at baseline, 28 days (d), and 84 d in both limbs (3T MRI). Resting vastus lateralis biopsies were obtained from both limbs at baseline, 24 hours (h), 7, 28, and 84 d for mRNA abundance measurements (RT-PCR microfluidic cards). Work output was greater throughout training in ECC + CON vs CON (20.8 ± 9.7%, P < .001). Muscle CSA increased from baseline in both limbs at 28 d (CON 4.3 ± 2.6%, ECC + CON 4.0 ± 1.9%, both P < .001) and 84d (CON 3.9 ± 2.3%, ECC + CON 4.0 ± 3.1%, both P < .001), and muscle volume and isometric strength at 84 d (CON 44.8 ± 40.0%, P < .001; ECC + CON 36.9 ± 40.0%, P < .01), but no between-limb differences existed in any parameter. Ingenuity Pathway Analysis identified several cellular functions associated with regulation of muscle mass and metabolism as altered by both modalities at 24 h and 7 d, but particularly with ECC + CON. However, mRNA responses waned thereafter, regardless of modality. Initial muscle mRNA responses to training did not reflect chronic training-induced hypertrophy. Moreover, ECC + CON did not produce greater hypertrophy than CON, despite greater loading throughout and a differential mRNA response during the initial training week.


Assuntos
Força Muscular , Músculo Quadríceps/anatomia & histologia , Músculo Quadríceps/metabolismo , Treinamento Resistido/métodos , Transcrição Gênica , Adulto , Índice de Massa Corporal , Humanos , Inflamação/fisiopatologia , Contração Isométrica , Perna (Membro)/fisiologia , Masculino , Músculo Quadríceps/fisiopatologia , Fatores de Tempo , Adulto Jovem
2.
Am J Clin Nutr ; 112(4): 1015-1028, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729615

RESUMO

BACKGROUND: Altering the temporal distribution of energy intake (EI) and introducing periods of intermittent fasting (IF) exert important metabolic effects. Restricting EI to earlier in the day [early time-restricted feeding (eTRF)] is a novel type of IF. OBJECTIVES: We assessed the chronic effects of eTRF compared with an energy-matched control on whole-body and skeletal muscle insulin and anabolic sensitivity. METHODS: Sixteen healthy males (aged 23 ± 1 y; BMI 24.0 ± 0.6 kg·m-2) were assigned to 2 groups that underwent either 2 wk of eTRF (n = 8) or control/caloric restriction (CON:CR; n = 8) diet. The eTRF diet was consumed ad libitum and the intervention was conducted before the CON:CR, in which the diet was provided to match the reduction in EI and body weight observed in eTRF. During eTRF, daily EI was restricted to between 08:00 and 16:00, which prolonged the overnight fast by ∼5 h. The metabolic responses to a carbohydrate/protein drink were assessed pre- and post-interventions following a 12-h overnight fast. RESULTS: When compared with CON:CR, eTRF improved whole-body insulin sensitivity [between-group difference (95% CI): 1.89 (0.18, 3.60); P = 0.03; η2p = 0.29] and skeletal muscle uptake of glucose [between-group difference (95% CI): 4266 (261, 8270) µmol·min-1·kg-1·180 min; P = 0.04; η2p = 0.31] and branched-chain amino acids (BCAAs) [between-group difference (95% CI): 266 (77, 455) nmol·min-1·kg-1·180 min; P = 0.01; η2p = 0.44]. eTRF caused a reduction in EI (∼400 kcal·d-1) and weight loss (-1.04 ± 0.25 kg; P = 0.01) that was matched in CON:CR (-1.24 ± 0.35 kg; P = 0.01). CONCLUSIONS: Under free-living conditions, eTRF improves whole-body insulin sensitivity and increases skeletal muscle glucose and BCAA uptake. The metabolic benefits of eTRF are independent of its effects on weight loss and represent chronic adaptations rather than the effect of the last bout of overnight fast. This trial was registered at clinicaltrials.gov as NCT03969745.


Assuntos
Jejum/fisiologia , Resistência à Insulina , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Composição Corporal , Ingestão de Energia , Metabolismo Energético , Glucose/metabolismo , Humanos , Masculino , Músculo Esquelético/metabolismo
3.
Am J Physiol Endocrinol Metab ; 318(3): E417-E429, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910028

RESUMO

Muscle anabolic resistance to dietary protein is associated with obesity and insulin resistance. However, the contribution of excess consumption of fat to anabolic resistance is not well studied. The aim of these studies was to test the hypothesis that acute and short-term dietary fat overload will impair the skeletal muscle protein synthetic response to dietary protein ingestion. Eight overweight/obese men [46.4 ± 1.4 yr, body mass index (BMI) 32.3 ± 5.4 kg/m2] participated in the acute feeding study, which consisted of two randomized crossover trials. On each occasion, subjects ingested an oral meal (with and without fat emulsion), 4 h before the coingestion of milk protein, intrinsically labeled with [1-13C]phenylalanine, and dextrose. Nine overweight/obese men (44.0 ± 1.7 yr, BMI 30.1 ± 1.1 kg/m2) participated in the chronic study, which consisted of a baseline, 1-wk isocaloric diet, followed by a 2-wk high-fat diet (+25% energy excess). Acutely, incorporation of dietary amino acids into the skeletal muscle was twofold higher (P < 0.05) in the lipid trial compared with control. There was no effect of prior lipid ingestion on indices of insulin sensitivity (muscle glucose uptake, pyruvate dehydrogenase complex activity, and Akt phosphorylation) in response to the protein/dextrose drink. Fat overfeeding had no effect on muscle protein synthesis or glucose disposal in response to whey protein ingestion, despite increased muscle diacylglycerol C16:0 (P = 0.06) and ceramide C16:0 (P < 0.01) levels. Neither acute nor short-term dietary fat overload has a detrimental effect on the skeletal muscle protein synthetic response to dietary protein ingestion in overweight/obese men, suggesting that dietary-induced accumulation of intramuscular lipids per se is not associated with anabolic resistance.


Assuntos
Gorduras na Dieta/farmacologia , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Sobrepeso/metabolismo , Período Pós-Prandial , Aminoácidos/metabolismo , Estudos Cross-Over , Glucose/metabolismo , Humanos , Hiperfagia , Resistência à Insulina , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Proteínas do Leite/farmacologia , Músculo Esquelético/efeitos dos fármacos
4.
J Appl Physiol (1985) ; 127(6): 1763-1771, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622161

RESUMO

The aim of this study was to determine the chronic (≥72 h postexercise) effects of high-intensity interval training (HIIT) on postprandial lipemia and metabolic markers in healthy volunteers. Eight physically active young men (mean ± SD: age 22 ± 3 yr, height 1.77 ± 0.07 m, body mass 67.7 ± 6.2 kg) underwent two 6-h mixed-meal tolerance tests and resting vastus lateralis muscle biopsies before the first session and ≥72 h after the final session of 4 wk of HIIT [16 sessions in total; 10 × 60-s bouts of cycling at 90% maximal oxygen uptake (V̇o2max), interspersed with 60-s intervals at 45% V̇o2max]. Arterialized and deep venous blood samples from across the forearm, brachial artery blood flow measurements, and whole-body indirect calorimetry data were obtained before, and at regular intervals for 6 h after, consumption of a standardized mixed meal. The main findings revealed that, when assessed ≥72 h postexercise, postprandial free fatty acid (FFA) uptake across the forearm was increased in response to exercise training (P = 0.025). However, 4 wk of HIIT did not alter fasting or postprandial circulating triglyceride concentrations or their tissue uptake, despite a 10.2% ± 7.7% improvement in V̇o2max (P = 0.004). Protein content of adipose triglyceride lipase in the vastus lateralis at rest was reduced by 25% ± 21% (P = 0.01). Collectively, these findings suggest that 4 wk of HIIT enhances postprandial clearance of FFA when assessed ≥72 h postexercise but does not confer persisting (training) adaptations in postprandial triglyceridemia.NEW & NOTEWORTHY When assessed ≥72 h after the last exercise session, 4 wk of high-intensity interval training (HIIT) did not improve triglyceridemia but enhanced free fatty acid uptake into muscle with a concurrent reduction in skeletal muscle adipose triglyceride lipase protein content. This suggests that previously reported acute reductions in postprandial triglyceridemia following a single bout of HIIT do not translate to sustained improvements after 4 wk of HIIT, supporting the concept of frequent exercise for the maintenance of lipemic control.


Assuntos
Exercício Físico/fisiologia , Hiperlipidemias/fisiopatologia , Período Pós-Prandial/fisiologia , Adaptação Fisiológica/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adulto , Jejum/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Humanos , Hiperlipidemias/metabolismo , Masculino , Refeições/fisiologia , Consumo de Oxigênio/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Triglicerídeos/metabolismo , Adulto Jovem
5.
Exp Physiol ; 103(6): 876-883, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663541

RESUMO

NEW FINDINGS: What is the central question of this study? The role of FGF21 as an exercise-induced myokine remains controversial. The aim of this study was to determine whether eccentric exercise would augment the release of FGF21 and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. What is the main finding and its importance? Eccentric exercise does not release total or bioactive FGF21 from human skeletal muscle. However, exercise releases its regulatory enzyme, FAP, from tissue(s) other than muscle, which might play a role in the inactivation of FGF21. ABSTRACT: The primary aim of the investigation was to determine whether eccentric exercise would augment the release of the myokine fibroblast growth factor 21 (FGF21) and/or its regulatory enzyme, fibroblast activation protein α (FAP), from skeletal muscle tissue into the systemic circulation of healthy human volunteers. Physically active young healthy male volunteers (age 25.0 ± 10.7 years; body mass index 23.1 ± 7.9 kg m-2 ) completed three sets of 25 repetitions (with 5 min rest in between) of single-leg maximal eccentric contractions using their non-dominant leg, whilst the dominant leg served as a control. Arterialized blood samples from a hand vein and deep venous blood samples from the common femoral vein of the exercised leg, along with blood flow of the superficial femoral artery using Doppler ultrasound, were obtained before and after each exercise bout and every 20 min during the 3 h recovery period. Muscle biopsy samples were taken at baseline, immediately and 3 and 48 h postexercise. The main findings showed that there was no significant increase in total or bioactive FGF21 secreted from skeletal muscle into the systemic circulation in response to exercise. Furthermore, skeletal muscle FGF21 protein content was unchanged in response to exercise. However, there was a significant increase in arterialized and venous FAP concentrations, with no apparent contribution to its release from the exercised leg. These findings raise the possibility that the elevated levels of FAP might play a role in the inactivation of FGF21 during exercise.


Assuntos
Exercício Físico/fisiologia , Fatores de Crescimento de Fibroblastos/sangue , Gelatinases/sangue , Proteínas de Membrana/sangue , Serina Endopeptidases/sangue , Adulto , Endopeptidases , Humanos , Masculino , Proteínas Musculares/sangue , Músculo Esquelético/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Descanso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA