Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 60(1): 77-85, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924237

RESUMO

The red fox (Vulpes vulpes) is one of the most common species of wild Canidae and is relatively abundant in Iran. Foxes (Vulpes spp.) transmit many zoonotic diseases, the most important of which are visceral leishmaniasis, rabies, hydatidosis, toxocariasis, and trichinellosis. In this study, visceral leishmaniasis, rabies, ectoparasites, canine gastrointestinal helminths, dermatophytosis, distemper, parvovirus infection, and heartworm infections were evaluated among live-trapped and rescued foxes injured by traffic road accidents referred to the teaching hospital of Kerman, Iran, veterinary faculty. Skin scraping and direct microscopic examination were used to detect ectoparasites and dermatophytosis. Immunochromatography rapid kits were used to detect dirofilariasis, parvovirus infection, and distemper. Necropsy was used to check for gastrointestinal parasites. Rabies and visceral leishmaniosis were screened for with direct fluorescent antibody test and ELISA methods, respectively. Gastrointestinal helminth infections, including Toxocara canis, Taenia taeniaeformis, Dipylidium caninum, Joyeuxiella echinorhyncoids, Toxascaris leonina, Taenia hydatigena, Echinococcus granulosus, Rictolaria spp., Oxynema spp., Macracanthorhynchus hirudinaceus, and Physaloptera spp., were detected. Skin scrapings showed dermatophytosis and various ectoparasites, including Rhipicephalus sanguineus, Ctenocephalides canis and Ctenocephalides felis, and Sarcoptes scabiei, in foxes with dermal lesions. Distemper and parvovirus infection (26.66%) were the common viral diseases, and rabies infection rate was quite high (16.66%). Dirofilariasis and leishmaniasis were detected in 10% of the population. This study showed that urban foxes which often cohabit with humans and domestic animals are carriers of many different pathogens. This interaction may facilitate indirect cross-species transmission of zoonotic disease. Periodic health monitoring and multidisciplinary cooperation for the diagnosis, control, and prevention of these zoonoses is highly recommended.


Assuntos
Cestoides , Dirofilariose , Cinomose , Doenças do Cão , Helmintos , Leishmaniose Visceral , Infecções por Parvoviridae , Raiva , Tinha , Humanos , Animais , Cães , Raposas/parasitologia , Irã (Geográfico)/epidemiologia , Leishmaniose Visceral/veterinária , Raiva/veterinária , Zoonoses , Infecções por Parvoviridae/veterinária , Tinha/veterinária , Prevalência , Doenças do Cão/epidemiologia
2.
Pathogens ; 11(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36422627

RESUMO

Population growth and industrialization have led to a race for greater food and supply productivity. As a result, the occupation and population of forest areas, contact with wildlife and their respective parasites and vectors, the trafficking and consumption of wildlife, the pollution of water sources, and the accumulation of waste occur more frequently. Concurrently, the agricultural and livestock production for human consumption has accelerated, often in a disorderly way, leading to the deforestation of areas that are essential for the planet's climatic and ecological balance. The effects of human actions on other ecosystems such as the marine ecosystem cause equally serious damage, such as the pollution of this habitat, and the reduction of the supply of fish and other animals, causing the coastal population to move to the continent. The sum of these factors leads to an increase in the demands such as housing, basic sanitation, and medical assistance, making these populations underserved and vulnerable to the effects of global warming and to the emergence of emerging and re-emerging diseases. In this article, we discuss the anthropic actions such as climate changes, urbanization, deforestation, the trafficking and eating of wild animals, as well as unsustainable agricultural intensification which are drivers for emerging and re-emerging of zoonotic pathogens such as viral (Ebola virus, hantaviruses, Hendravirus, Nipah virus, rabies, and severe acute respiratory syndrome coronavirus disease-2), bacterial (leptospirosis, Lyme borreliosis, and tuberculosis), parasitic (leishmaniasis) and fungal pathogens, which pose a substantial threat to the global community. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to raise awareness and educate people about the science behind and the battle against zoonotic pathogens to mitigate the threat for both humans and animals.

3.
J Med Virol ; 94(11): 5507-5511, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35790406

RESUMO

Evidence of Simian virus 40 (SV40) DNA sequences or gene products has been reported in a variety of organ systems in humans. However, the route of transmission and the significance of SV40 polyomavirus infection in human are unknown. The aim of study was to characterize the frequency of SV40 infection in immunocompetent and immunocompromised patients with respiratory diseases. Respiratory specimens from patients with respiratory tract illness obtained from nasopharyngeal aspirates (n = 280) were screened for SV40 polyomavirus using real-time PCR; coinfection with other viruses was examined. Positive results were confirmed with sequencing. Of the 280 samples analysed, 2 (0.71%) were positive for SV40. SV40 was identified in nasopharyngeal aspirate samples from children aged 8 and 14 months who were immunocompetent. Both patients had upper or lower respiratory tract infection. Coinfections with other viruses were found in 50% of the SV40 positive samples. The data suggest that SV40 can infect respiratory tract, that respiratory tract may represent a route of transmission or a site for virus persistence, and that with the high rate of co-infection, SV40 may not involved in respiratory diseases.


Assuntos
Coinfecção , Infecções por Polyomavirus , Infecções Respiratórias , Criança , DNA Viral/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Vírus 40 dos Símios/genética
4.
Gene Rep ; 26: 101505, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35071820

RESUMO

This review was focused on global data analysis and risk factors associated with morbidity and mortality of coronavirus disease 2019 from different countries, including Bangladesh, Brazil, China, Central Eastern Europe, Egypt, India, Iran, Pakistan, and South Asia, Africa, Turkey and UAE. Male showed higher confirmed and death cases compared to females in most of the countries. In addition, the case fatality ratio (CFR) for males was higher than for females. This gender variation in COVID-19 cases may be due to males' cultural activities, but similar variations in the number of COVID-19 affected males and females globally. Variations in the immune system can illustrate this divergent risk comparatively higher in males than females. The female immune system may have an edge to detect pathogens slightly earlier. In addition, women show comparatively higher innate and adaptive immune responses than men, which might be explained by the high density of immune-related genes in the X chromosome. Furthermore, SARS-CoV-2 viruses use angiotensin-converting enzyme 2 (ACE2) to enter the host cell, and men contain higher ACE2 than females. Therefore, males may be more vulnerable to COVID-19 than females. In addition, smoking habit also makes men susceptible to COVID-19. Considering the age-wise distribution, children and older adults were less infected than other age groups and the death rate. On the contrary, more death in the older group may be associated with less immune system function. In addition, most of these group have comorbidities like diabetes, high pressure, low lungs and kidney function, and other chronic diseases. Due to the substantial economic losses and the numerous infected people and deaths, research examining the features of the COVID-19 epidemic is essential to gain insight into mitigating its impact in the future and preparedness for any future epidemics.

5.
Trends Food Sci Technol ; 121: 105-113, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34898853

RESUMO

BACKGROUND: Severe acute respiratory coronavirus syndrome 2 (SARS-CoV-2) is the etiological agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 was first detected in Wuhan, China and spread to other countries and continents causing a variety of respiratory and non-respiratory symptoms which led to death in severe cases. SCOPE AND APPROACH: In this review, we discuss and analyze the impact of the COVID-19 pandemic on animal production systems and food production of meat, dairy, eggs, and processed food, in addition to assessing the impact of the pandemic on animal healthcare systems, animal healthcare quality, animal welfare, food chain sustainability, and the global economy. We also provide effective recommendations to animal producers, veterinary healthcare professionals, workers in animal products industries, and governments to alleviate the effects of the pandemic on livestock farming and production systems. KEY FINDINGS AND CONCLUSIONS: Port restrictions, border restrictions, curfews, and social distancing limitations led to reduced quality, productivity, and competitiveness of key productive sectors. The restrictions have hit the livestock sector hard by disrupting the animal feed supply chain, reducing animal farming services, limiting animal health services including delays in diagnosis and treatment of diseases, limiting access to markets and consumers, and reducing labor-force participation. The inhumane culling of animals jeopardized animal welfare. Egg smashing, milk dumping, and other animal product disruptions negatively impacted food production, consumption, and access to food originating from animals. In summary, COVID-19 triggered lockdowns and limitations on local and international trade have taken their toll on food production, animal production, and animal health and welfare. COVID-19 reverberations could exacerbate food insecurity, hunger, and global poverty. The effects could be massive on the most vulnerable populations and the poorest nations.

6.
Chaos Solitons Fractals ; 152: 111311, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34376927

RESUMO

Coronavirus disease (COVID-19) caused by SARS-CoV-2 was notified from Wuhan city, Hubei province, China in the mid of December 2019. The disease is showing dynamic change in the pattern of confirmed cases and death toll in these low and middle-income countries (LMICs). In this study, exponential growth (EG) method was used to calculate the real-time reproductive number (Rt) for initial and later stage of epidemic in South Asian Association for Regional Cooperation (SAARC) member countries (April 2020 - December 2020). Time dependent (TD) method was used to calculate the weekly real -time reproduction number (Rt). We also presented the observations on COVID-19 epidemiology in relation with the health expenditure, poverty, BCG vaccination, literacy population density and Rt for understanding the current scenario, trends, and expected outcome of the disease in SAARC countries. A significant positive correlation was noticed between COVID-19 deaths and health expenditure (% GDP) (r = 0.58, P < 0.05). The other factors such as population density/sq km, literacy %, adult population %, and poverty % were not significantly correlated with number of COVID-19 cases and deaths. Among SAARC countries, the highest Rt was observed in India (Rt = 2.10; 95% CI 2.04-2.17) followed by Bangladesh (Rt = 1.62; 95% CI 1.59-1.64) in initial state of epidemic. A continuous monitoring is necessitated in all countries looking at the medical facilities, available infrastructure and healthcare manpower, constraints which may appear with increased number of critically ill patients if the situation persists longer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA