RESUMO
Staphylococcus aureus, the causative agent of many infectious diseases has developed resistance to many antibiotics, even chloramphenicol which was the essential antibiotic recommended for the treatment of bacterial infection. Thus, other alternatives to fight against S. aureus infections are necessary; and combinatory therapy of antibiotics with natural compounds is one of the approaches. This study evaluated the activity of the combination of mallotojaponin B and chloramphenicol against Methicillin-resistant Staphylococcus aureus (MRSA). Antibacterial activities were evaluated by broth microdilution and the checkerboard methods. Modes of action as time-kill kinetic, Nucleotide leakage, inhibition and eradication of biofilm, and loss of salt tolerance were evaluated. Cytotoxicity was evaluated on Vero and Raw cell lines. Mallotojaponin B showed good activity against MRSA with a MIC value of 12.5 µg/mL. MRSA showed high resistance to chloramphenicol (MIC = 250 µg/mL). The combination produced a synergistic effect with a mean FICI of 0.393. This combination was bactericidal, inducing nucleotide leakage, inhibiting biofilm formation, and eradicating biofilm formed by MRSA. The synergic combination was non-cytotoxic to Vero and Raw cell lines. Thus, the combination of mallotojaponin B and chloramphenicol could be a potential alternative to design a new drug against MRSA infections.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Cloranfenicol/farmacologia , Staphylococcus aureus , Sinergismo Farmacológico , Antibacterianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
The phytochemical investigation of a previously unstudied species of the genus Indigofera, I. atriceps Hook.f. was undertaken and two new phenolic compounds, atricephenols A (1) and B (2) were isolated, along with nine known secondary metabolites viz., (-)-melilotocarpan D (3), genistein (4), melilotocarpan A (5), maackiain (6), p-hydroxybenzaldehyde (7), bornesitol (8), ß-sitosterol (9), sitosterol-3-O-ß-D-glucopyranoside (10) and stigmasterol-3-O-ß-D-glucopyranoside (11). Their structures were elucidated by extensive NMR spectroscopic analyses and HRESIMS, and by comparing their data with those reported in the literature. Compounds 1, 4, 7-11 were tested for their antibacterial efficacies and for their potential to inhibit the enzyme urease. Compounds 7 and 9 showed significant antibacterial activity against Salmonella typhi (ZOIs of 13 and 15 mm, respectively), while the best urease inhibition was measured for compound 9 with an IC50 value of 18.6 µM, which is higher than that of the potent inhibitor, thiourea (IC50 = 21.5 µM).
Assuntos
Fabaceae , Indigofera , Indigofera/química , Fabaceae/química , Urease , Estrutura Molecular , Fenóis/farmacologia , Fenóis/química , Antibacterianos/químicaRESUMO
ETHNOPHARMACOLOGICAL SIGNIFICANCE: Medicinal plants from the Terminalia genus are widely used as remedies against many infectious diseases, including malaria. As such, Terminalia ivorensis A. Chev. and Terminalia brownii Fresen. are famous due to their usefulness in traditional medicines to treat malaria and yellow fever. However, further information is needed on the extent of anti-Plasmodium potency of extracts and fractions from these plants and their phytochemical profile. AIM OF THE STUDY: This study was designed to investigate the in vitro antiplasmodial activity and to determine the chemical profile of promising extracts and fractions from T. ivorensis and T. brownii stem bark. MATERIALS AND METHODS: Crude aqueous, ethanolic, methanolic, hydroethanolic and ethyl acetate extracts were prepared by maceration from the stem barks of T. brownii and T. ivorensis. They were subsequently tested against chloroquine-sensitive (Pf3D7) and multidrug-resistant (PfDd2) strains of P. falciparum using the parasite lactate dehydrogenase (PfLDH) assay. Extracts showing very good activity on both plasmodial strains were further fractionated using column chromatography guided by evidence of antiplasmodial activity. All bioactive extracts and fractions were screened for their cytotoxicity on Vero and Raw cell lines using the resazurin-based assay and on erythrocytes using the hemolysis assay. The phytochemical profiles of selected potent extracts and fractions were determined by UPLC-QTOF-MS analysis. RESULTS: Of the ten extracts obtained from both plant species, nine showed inhibitory activity against both P. falciparum strains (Pf3D7 and PfDd2), with median inhibitory concentration (IC50) values ranging from 0.13 µg/ml to 10.59 µg/ml. Interestingly, the aqueous extract of T. ivorensis (TiW) and methanolic extract of T. brownii (TbM) displayed higher antiplasmodial activities against both strains (IC50 0.13-1.43 µg/ml) and high selectivity indices (SI > 100). Their fractionation led to two fractions from T. ivorensis and two from T. brownii that showed very promising antiplasmodial activity (IC50 0.15-1.73 µg/mL) and SI greater than 100. The hemolytic assay confirmed the safety of crude extracts and fractions on erythrocytes. UPLC-MS-based phytochemical analysis of the crude aqueous extract of T. ivorensis showed the presence of ellagic acid (1) and leucodelphidin (2), while analysis of the crude methanol extract of T. brownii showed the presence of ellagic acid (1), leucodelphinidin (2), papyriogenin D (3), dihydroactinidiolide (4) and miltiodiol (5). CONCLUSIONS: The extracts and fractions from T. ivorensis and T. brownii showed very good antiplasmodial activity, thus supporting the traditional use of the two plants in the treatment of malaria. Chemical profiling of the extracts and fractions led to the identification of chemical markers and the known antimalarial compound ellagic acid. Further isolation and testing of other pure compounds from the active fractions could lead to the identification of potent antiplasmodial compounds.
Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Terminalia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ácido Elágico/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais , Plasmodium falciparum , Espectrometria de Massas em Tandem , Terminalia/químicaRESUMO
Antimalarial drug discovery has been facilitated by the development of various in vitro drug susceptibility testing methods suitable for medium-throughput or high-throughput campaigns. Among many, the Plasmodium falciparum lactate dehydrogenase (PfLDH) assay has acceptable demand on equipment, labour, technical skills and affordability and offers a good opportunity for scientists in low- and middle-income countries to participate in the global effort of discovering future antimalarial drugs. Hence, to enable our search for novel antimalarial drugs, we implemented and examined assay conditions and validated the PfLDH-based method in our laboratory using a reference set of standard antimalarial drugs with known activity against Plasmodium falciparum strains. The PfLDH assay revealed acceptable linearity profiles of R2 = 0.97 and 0.92 for Pf3D7 and PfDd2, respectively, achieved at 2% parasitaemia and 1% haematocrit. The detection and quantitation limits (DL and QL) of the PfLDH-based assay were 0.09% and 0.4% parasitemia, respectively. The assay showed an acceptable average Z-factor between 0.76 and 0.79 and was considerably robust. The average interassay reproducibility via percent coefficient of variation (%CV) was 5.47 between independent experiments. Overall, the PfLDH-based method produced a reliable and reproducible drug screening profile for in vitro assays in our setting. There were no significant interassay variability or hazards of other screening assays.
Assuntos
Antimaláricos , Malária Falciparum , Mycobacterium tuberculosis , Plasmodium , Antimaláricos/farmacologia , Colorimetria , Avaliação Pré-Clínica de Medicamentos , Humanos , L-Lactato Desidrogenase , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Testes de Sensibilidade Microbiana , Plasmodium falciparum , Reprodutibilidade dos TestesRESUMO
The phytochemical investigation of the dichloromethane/methanol (1:1) extract of the stem bark of Scyphocephalium ochocoa, led to the isolation of one new dibenzofuran derivative, named scyphocephalione A (1), along with three other compounds, including epicatechin (2), gentisic acid (3) and myo-inositol (4). The structures of all the compounds were established with help of spectroscopic data including IR, UV, MS, 1 D- and 2 D-NMR, as well as by comparison with previously reported data in literature, and chemical modification. All the compounds were obtained from the genus Scyphocephalium for the first time. The anti-inflammatory activity (using chemiluminescence technique) of the crude extract and compound 1, together with NO inhibition (using ELISA), TNF-α (using ELISA) and MCF-7 cells cytotoxicity effects (using MTT assay) of compound 1 were assessed. From the results obtained, compound 1 could be considered as a promising chemotherapeutic agent for the treatment of inflammatory diseases.
Assuntos
Casca de Planta , Extratos Vegetais , Anti-Inflamatórios/análise , Dibenzofuranos , Compostos Fitoquímicos/análise , Casca de Planta/química , Extratos Vegetais/químicaRESUMO
Senegalin (1), a new phenylpropanoid has been isolated from the stem bark of Ekebergia senegalensis A. Juss. along with twelve known secondary metabolites including coumarins 2-5, 4-hydroxy-3,5-methylbenzoic acid (6), pentacyclic triterpenoids 7-9, acyclic triterpenoids 10 and 11 and steroids 12 and 13, respectively. Their structures were elucidated with the help of spectroscopic techniques including 1 D- and 2 D-NMR. The antibacterial activity of the major compounds (2, 9-11) was evaluated on five bacterial strains. However, only compounds 2 and 11 showed a weak inhibition against Bacillus subtilis and Pseudomonas agarici. Furthermore, the chemotaxonomic significance of these compounds has also been elaborated.
Assuntos
Meliaceae , Triterpenos , Casca de Planta , PseudomonasRESUMO
The phytochemical exploration of the Entandrophragma candollei stem bark extract led to the isolation and identification of twenty compounds including three undescribed phragmalin-class limonoids named encandollens C-E (1-3), the undescribed protolimonoid 5 together with sixteen known compounds. The structures of all the isolated compounds were determined by interpretation of their spectroscopic and spectrometric data including HRMS, 1D and 2D NMR analyses. The assignment of the absolute and relative stereochemistry of the undescribed compounds was achieved using SC-XRD analyses as well as NOESY experiments. The previously reported structure of odoratone (5a) was corrected as 23 R,24 S-dihydroxy-22 S,25-epoxytirucall-7-en-3-one (5) based on its NMR and SC-XRD data. Prieurianin (4) exhibited high cytotoxic activity on KB3-1 cell lines with an IC50 of 1.47 µM compared to the reference griseofulvin (IC50 = 17-21 µM). The results of the in silico docking of compound 4 supported and delivered further insights on its cytotoxicity.
Assuntos
Limoninas , Meliaceae , Limoninas/farmacologia , Estrutura Molecular , Casca de PlantaRESUMO
A new alkaloid, manniindole 1, together with four known compounds: aristolactam AII 2, aristolactam BII 3, piperolactam D 4 and polycarpol 5 were isolated from the crude extract EtOH-H2O (8:2) of the roots of Anonidium mannii by chromatographic separation. The structure elucidation was performed on the basis of a spectroscopic analysis (IR, HRESI MS, 1D and 2D NMR) as well as a comparison of their spectral data with those reported in the literature. For the first time, the crude extract and those isolated compounds were evaluated for their anti-schistosomal activity against Schistosoma mansoni and for cytotoxicity activity against Huh7 and A549 cells. Furthermore, they were also tested in vitro on the recent characterized Schistosoma mansoni NAD+ catabolizing enzyme (SmNACE) for their impact on this enzyme which is localized on the outer surface of the adult parasite. Compound 2 displayed quite good worm killing capability, while 4 showed significant inhibition of SmNACE.
Assuntos
Annonaceae , Animais , Indóis/farmacologia , Raízes de Plantas , Schistosoma mansoniRESUMO
Three previously undescribed indole alkaloids, named latifolianine A (1) and latifoliaindoles A and B (2 and 3), along with 10 known compounds (4-13), were isolated from the heartwood of Nauclea latifolia. Their structures were elucidated based on the analysis of their NMR and MS data. Latifolianine A (1) represents an unusual and unprecedented monoterpene indole alkaloid unit condensed with an ursane-type pentacyclic triterpenoid moiety. Plausible biogenetic routes toward latifolianine A (1) and latifoliaindoles A and B (2 and 3) were proposed. All the isolates were assessed in vitro for their inhibitory effects on Haemophilus influenzae. Naucleidinal (7) exhibited potent antibacterial activity (MIC value of 3.1 µg/mL) as compared to a reference drug, ciprofloxacin (MIC value of 1.6 µg/mL).
Assuntos
Antibacterianos/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Rubiaceae/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ethnopharmacological surveys were conducted in two regions of Gabon. This led to highlighting some of the medicinal plants used by local populations in the management of HIV/AIDS opportunistic diseases. Two regions with the highest occurrence of HIV/AIDS cases were visited and ethnopharmarcological data was gathered. These regions were the Estuaire Province (Libreville and its neighborhood) and the Haut-Ogooué Province (Franceville and its neighborhood). The opportunistic diseases and symptomatic conditions considered during this study were: diarrhea, respiratory tract infections, cough, tuberculosis, abscesses, stomach ache, skin rashes, venereal diseases, typhoid fever, anemia, general tiredness, hepatitis and vomiting. MATERIALS AND METHODS: The reported species were evaluated through three parameters: specificity, reliability and frequency. Plant parts of relevant species were harvested and extracted with an aqueous alcohol solution (ethanol/water: 1/1). The extracts obtained were submitted to phytochemical screening and in vitro microbiological assays on some clinical isolates and ATCC strains, involved in HIV/AIDS opportunistic diseases through the Agar well diffusion and Microbroth dilution methods. RESULTS: Among the 52 species identified during this survey, Coelocaryon klainei Pierre ex Heckel (Myristicaceae), Dacryodes klaineana (Pierre) H.J. Lam (Bursecaceae), Phyllanthus diandrus Pax (Euphorbiaceae), Saccoglotys gabonensis (Baill.) Urb. (Humiriaceae) and Tetrorchidium didymostemon (Baill.) Pax & K. Hoffm. (Euphorbiaceae) were submitted to in vitro microbiological assays. Phyllanthus diandrus bark and leaves show best antibacterial activities against Pseudomonas aeruginosa and Klebsiella pneumoniae with MIC value of 0.25 respectively. Phytochemical screening revealed the presence in all the plant parts extracts of potentially bioactive molecules, including polyphenols, especially flavonoids and tannins. CONCLUSION: It is concluded that some of these plants might be submitted to further scientific studies, including the identification and isolation of bioactive principles, that could be developed to drugs for the treatment of HIV/AIDS opportunistic diseases.
Assuntos
Etnofarmacologia , Infecções por HIV/terapia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/classificação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Gabão , Humanos , Fitoterapia , Extratos Vegetais/química , Plantas Medicinais/químicaRESUMO
Two new flavonoid glycosides, namely 3'-(2'',4''-dihydroxybenzyloxy)acanthophorin B (1b) and beta,2,3',4,4',6-hexahydroxy-alpha-(alpha-L-rhamnopyranosyl)dihydrochalcone (2) were isolated from the leaves of Psorospermum androsaemifolium together with quercetin (1), acanthophorin B (1a), alpha- (3) and beta-amyrine (3a), vismiaquinone (4), 12-hentriacontanol and hentriacontane. The structures of these secondary metabolites were established using detailed spectroscopic analysis and by comparison with published data. Compounds 1, 1a, 1b, 2, 3, 3a and 4 showed weak antifungal and antibacterial activities.
Assuntos
Chalconas/química , Clusiaceae/química , Flavonas/química , Flavonoides/química , Glicosídeos/química , Ramnose/análogos & derivados , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Chalconas/isolamento & purificação , Chalconas/farmacologia , Flavonas/isolamento & purificação , Flavonas/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Hidrólise , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Ramnose/química , Ramnose/isolamento & purificação , Ramnose/farmacologia , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Fifteen crude extracts from the stem bark and seeds of four medicinal plants, viz: Entandrophragma angolense, Picralima nitida, Schumanniophyton magnificum and Thomandersia hensii were tested in vitro for their antimalarial activity against the chloroquine-resistant Plasmodium falciparum W2 strain. The results showed that the extracts of these plants possessed some antimalarial activity, the methanol extract of Picralima nitida demonstrating the highest activity in vitro. Further isolation and identification of some active compounds from these plants will justify their common use in traditional medicine for the treatment of malaria or fever in Cameroon.
RESUMO
In the search of active principles from the stem bark of Entandrophragma angolense, we submitted the compounds isolated from the dichloromethane-methanol (1:1) extract of the stem bark to antimalarial test against chloroquine resistant strain W2 of Plasmodium falciparum malaria parasite. Only 7alpha-obacunyl acetate and a cycloartane derivative exhibited a good activity, with IC(50)s of 2 and 5.4 microg/ml respectively. Other compounds were moderately active.