Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(3): 1196-1207, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156365

RESUMO

Reliable, predictable engineering of cellular behavior is one of the key goals of synthetic biology. As the field matures, biological engineers will become increasingly reliant on computer models that allow for the rapid exploration of design space prior to the more costly construction and characterization of candidate designs. The efficacy of such models, however, depends on the accuracy of their predictions, the precision of the measurements used to parametrize the models, and the tolerance of biological devices for imperfections in modeling and measurement. To better understand this relationship, we have derived an Engineering Error Inequality that provides a quantitative mathematical bound on the relationship between predictability of results, model accuracy, measurement precision, and device characteristics. We apply this relation to estimate measurement precision requirements for engineering genetic regulatory networks given current model and device characteristics, recommending a target standard deviation of 1.5-fold. We then compare these requirements with the results of an interlaboratory study to validate that these requirements can be met via flow cytometry with matched instrument channels and an independent calibrant. On the basis of these results, we recommend a set of best practices for quality control of flow cytometry data and discuss how these might be extended to other measurement modalities and applied to support further development of genetic regulatory network engineering.


Assuntos
Redes Reguladoras de Genes , Biologia Sintética , Simulação por Computador , Citometria de Fluxo , Redes Reguladoras de Genes/genética , Engenharia Genética/métodos , Biologia Sintética/métodos
2.
Science ; 373(6550)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210851

RESUMO

Synthetic biological networks comprising fast, reversible reactions could enable engineering of new cellular behaviors that are not possible with slower regulation. Here, we created a bistable toggle switch in Saccharomyces cerevisiae using a cross-repression topology comprising 11 protein-protein phosphorylation elements. The toggle is ultrasensitive, can be induced to switch states in seconds, and exhibits long-term bistability. Motivated by our toggle's architecture and size, we developed a computational framework to search endogenous protein pathways for other large and similar bistable networks. Our framework helped us to identify and experimentally verify five formerly unreported endogenous networks that exhibit bistability. Building synthetic protein-protein networks will enable bioengineers to design fast sensing and processing systems, allow sophisticated regulation of cellular processes, and aid discovery of endogenous networks with particular functions.


Assuntos
Bioengenharia , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/genética
3.
Sci Rep ; 9(1): 6932, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061426

RESUMO

Self-replicating (replicon) RNA is a promising new platform for gene therapy, but applications are still limited by short persistence of expression in most cell types and low levels of transgene expression in vivo. To address these shortcomings, we developed an in vitro evolution strategy and identified six mutations in nonstructural proteins (nsPs) of Venezuelan equine encephalitis (VEE) replicon that promoted subgenome expression in cells. Two mutations in nsP2 and nsP3 enhanced transgene expression, while three mutations in nsP3 regulated this expression. Replicons containing the most effective mutation combinations showed enhanced duration and cargo gene expression in vivo. In comparison to wildtype replicon, mutants expressing IL-2 injected into murine B16F10 melanoma showed 5.5-fold increase in intratumoral IL-2 and 2.1-fold increase in infiltrating CD8 T cells, resulting in significantly slowed tumor growth. Thus, these mutant replicons may be useful for improving RNA therapeutics for vaccination, cancer immunotherapy, and gene therapy.


Assuntos
Terapia Genética , Vetores Genéticos/genética , Imunoterapia , RNA/genética , Replicon , Transcrição Gênica , Alelos , Animais , Linhagem Celular Tumoral , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Imunidade/genética , Imunoterapia/métodos , Melanoma Experimental , Camundongos , Mutação , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Regiões Promotoras Genéticas , RNA/administração & dosagem
4.
Nat Chem Biol ; 14(11): 1043-1050, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327560

RESUMO

Synthetic mRNA is an attractive vehicle for gene therapies because of its transient nature and improved safety profile over DNA. However, unlike DNA, broadly applicable methods to control expression from mRNA are lacking. Here we describe a platform for small-molecule-based regulation of expression from modified RNA (modRNA) and self-replicating RNA (replicon) delivered to mammalian cells. Specifically, we engineer small-molecule-responsive RNA binding proteins to control expression of proteins from RNA-encoded genetic circuits. Coupled with specific modRNA dosages or engineered elements from a replicon, including a subgenomic promoter library, we demonstrate the capability to externally regulate the timing and level of protein expression. These control mechanisms facilitate the construction of ON, OFF, and two-output switches, with potential therapeutic applications such as inducible cancer immunotherapies. These circuits, along with other synthetic networks that can be developed using these tools, will expand the utility of synthetic mRNA as a therapeutic modality.


Assuntos
Redes Reguladoras de Genes , Terapia Genética/métodos , Regiões Promotoras Genéticas , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , RNA/química , Animais , Linhagem Celular , Cricetinae , DNA/química , Biblioteca Gênica , Engenharia Genética , Células HEK293 , Humanos , Imunoterapia , Camundongos , RNA Interferente Pequeno/metabolismo , Biologia Sintética
5.
Nucleic Acids Res ; 46(8): 4072-4086, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617873

RESUMO

Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three 'landing pad' recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing.


Assuntos
Engenharia Celular , Proteínas Recombinantes/genética , Animais , Células CHO , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Cricetulus , Loci Gênicos , Genoma , Recombinação Homóloga , Proteínas Recombinantes/biossíntese , Transgenes
6.
Science ; 359(6376)2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439214

RESUMO

Gene and engineered-cell therapies promise to treat diseases by genetically modifying cells to carry out therapeutic tasks. Although the field has had some success in treating monogenic disorders and hematological malignancies, current approaches are limited to overexpression of one or a few transgenes, constraining the diseases that can be treated with this approach and leading to potential concerns over safety and efficacy. Synthetic gene networks can regulate the dosage, timing, and localization of gene expression and therapeutic activity in response to small molecules and disease biomarkers. Such "programmable" gene and engineered-cell therapies will provide new interventions for incurable or difficult-to-treat diseases.


Assuntos
Engenharia Celular/métodos , Terapia Baseada em Transplante de Células e Tecidos , Técnicas de Reprogramação Celular , Engenharia Genética/métodos , Terapia Genética , Biologia Sintética/métodos , DNA/genética , Expressão Gênica , Redes Reguladoras de Genes , Genes Sintéticos , Humanos , RNA/genética , Proteínas Recombinantes de Fusão , Transgenes
7.
Artigo em Inglês | MEDLINE | ID: mdl-27270296

RESUMO

Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential.


Assuntos
Morfogênese , Biologia Sintética , Materiais Biocompatíveis , Humanos
9.
Nat Genet ; 42(9): 745-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20729854

RESUMO

There is a complex relationship between the evolution of segmental duplications and rearrangements associated with human disease. We performed a detailed analysis of one region on chromosome 16p12.1 associated with neurocognitive disease and identified one of the largest structural inconsistencies in the human reference assembly. Various genomic analyses show that all examined humans are homozygously inverted relative to the reference genome for a 1.1-Mb region on 16p12.1. We determined that this assembly discrepancy stems from two common structural configurations with worldwide frequencies of 17.6% (S1) and 82.4% (S2). This polymorphism arose from the rapid integration of segmental duplications, precipitating two local inversions within the human lineage over the last 10 million years. The two human haplotypes differ by 333 kb of additional duplicated sequence present in S2 but not in S1. Notably, we show that the S2 configuration harbors directly oriented duplications, specifically predisposing this chromosome to disease-associated rearrangement.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 16 , Polimorfismo Genético , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico/normas , Cromossomos Humanos Par 16/química , Cromossomos Humanos Par 16/genética , Hibridização Genômica Comparativa , Dosagem de Genes , Predisposição Genética para Doença , Genética Populacional , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Primatas/genética , Projetos de Pesquisa , Risco
10.
Proc Natl Acad Sci U S A ; 107(24): 10848-53, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534489

RESUMO

Variation in genome structure is an important source of human genetic polymorphism: It affects a large proportion of the genome and has a variety of phenotypic consequences relevant to health and disease. In spite of this, human genome structure variation is incompletely characterized due to a lack of approaches for discovering a broad range of structural variants in a global, comprehensive fashion. We addressed this gap with Optical Mapping, a high-throughput, high-resolution single-molecule system for studying genome structure. We used Optical Mapping to create genome-wide restriction maps of a complete hydatidiform mole and three lymphoblast-derived cell lines, and we validated the approach by demonstrating a strong concordance with existing methods. We also describe thousands of new variants with sizes ranging from kb to Mb.


Assuntos
Genoma Humano , Mapeamento por Restrição Óptica/métodos , Algoritmos , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Mola Hidatiforme/genética , Linfócitos/metabolismo , Mapeamento por Restrição Óptica/estatística & dados numéricos , Gravidez , Neoplasias Uterinas/genética
11.
PLoS Biol ; 7(5): e1000112, 2009 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-19468303

RESUMO

The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.


Assuntos
Biologia Computacional/métodos , Genoma/genética , Animais , Bases de Dados Genéticas , Duplicação Gênica , Genoma/fisiologia , Humanos , Camundongos
12.
Nature ; 453(7191): 56-64, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451855

RESUMO

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale--particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation--a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Inversão Cromossômica/genética , Eucromatina/genética , Deleção de Genes , Geografia , Haplótipos , Humanos , Mutagênese Insercional/genética , Polimorfismo de Nucleotídeo Único/genética , Grupos Raciais/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA