Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Rev Camb Philos Soc ; 95(4): 1073-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627362

RESUMO

Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change.


Assuntos
Migração Animal/fisiologia , Biodiversidade , Fenômenos Ecológicos e Ambientais , Animais , Simulação por Computador , Estágios do Ciclo de Vida , Modelos Biológicos , Estações do Ano
2.
J Anim Ecol ; 89(9): 1997-2012, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32441766

RESUMO

Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analysed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behaviour, incorporating environmental realism not possible in the laboratory while benefiting from the distinct capacity of camera traps to generate large datasets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review use experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.


Assuntos
Espécies Introduzidas , Comportamento Predatório , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA