RESUMO
Podolian cattle is an autochthonous breed well adapted to the harsh semi-arid environments of the Southern Italy regions; the extensive rearing system used for these indigenous animals is based on grazing on spontaneous pastures, such as grasslands or wood pastures These grazing systems respect animal welfare and enrich animal products with characteristics closely related to the feeding system and the farming environment. The aim of the present study was to characterize the nutritional value of a forage crop and a wood-pasture and to evaluate the effects of grazing by Podolian young bulls on the performances and meat quality in relation to the age at slaughter (14 or 18 months) and to the ageing time of meat (3, 9 or 14 days). The metabolizable energy and the gas production were greater in April and June for both pasture systems. Young bulls raised on the grassland showed greater slaughter weights (p < 0.05) as compared to those fed on the woodland system, at both the slaughtering ages. The Warner Bratzler Shear (WBS) force values for raw and cooked meat were not influenced by the pasture system but they significantly (p < 0.01) decreased in relation to the ageing time in all the groups. Ageing markedly (p < 0.05) increased the malondialdehyde (MDA) concentration from 3 to 14 days of storage, regardless of the pasture system and the slaughtering age. The n-6/n-3 polyunsaturated fatty acid ratio of meat was markedly lower in grassland animals, regardless of the age of slaughter. In conclusion, 18 months old grassland beef showed better performances and yield of meat cuts. Ageing for 9 days positively affected meat WBS without increasing MDA concentration.
Assuntos
Criação de Animais Domésticos , Animais , Masculino , Bovinos/fisiologia , Criação de Animais Domésticos/métodos , Pradaria , Itália , Carne/análise , Carne/normas , Ração Animal/análise , Madeira/química , Dieta/veterinária , Envelhecimento/fisiologia , Valor NutritivoRESUMO
Hemp seed cake (HSC) (Cannabis sativa L.) is a rich source of polyunsaturated fatty acids, high-quality proteins and essential amino acids. The aim of this study was to evaluate the effects of dietary inclusion of HSC on growth performance, meat quality traits, fatty acids profile and oxidative status, and intestinal morphology in slow-growing broilers. A total of 180 male slow-growing broilers were randomly assigned to one of three dietary treatments containing different levels of HSC: 0 (HSC0), 5 (HSC5) or 10% (HSC10). Birds were slaughtered at 49 days of age: breast and thigh muscles were analysed and duodenum mucosa histomorphological features were evaluated. Regardless the level of HSC inclusion, no differences among groups were found for performance and meat quality traits. The thigh and breast fatty acid profile were significantly improved in both HSC groups, with an increase of the long chain fatty acids of n-3 series and decrease of n-6/n-3 ratio. The HSC diets lowered the MDA concentration and lipid hydroperoxides in breast meat. Histomorphometrical analysis revealed a significant increase in villus height, surface area and villus/crypt ratio, with a decrease of crypt depth, suggesting that dietary supplementation with HSC may boost intestinal health status in poultry. In conclusion, dietary HSC did not affect performance, carcass traits and meat quality, while it positively influenced the lipid profile of meat, and improved the oxidative status and gut health, thus representing a valuable and sustainable alternative ingredient in broiler diet.
Assuntos
Cannabis , Masculino , Animais , Galinhas , Carne , Dieta/veterinária , Ácidos Graxos , Estresse Oxidativo , SementesRESUMO
This paper proposes the use of modified biochar, derived from Sawdust (SD) biomass using sonication (SSDB) and Ozonation (OSDB) processes, as an additive for biogas production from green algae Cheatomorpha linum (C. linum) either individually or co-digested with natural diet for rotifer culture (S. parkel). Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared (FTIR), thermal-gravimetric (TGA), and X-ray diffraction (XRD) analyses were used to characterize the generated biochar. Ultrasound (US) specific energy, dose, intensity and dissolved ozone (O3) concentration were also calculated. FTIR analyses proved the capability of US and ozonation treatment of biochar to enhance the biogas production process. The kinetic model proposed fits successfully with the data of the experimental work and the modified Gompertz models that had the maximum R2 value of 0.993 for 150 mg/L of OSDB. The results of this work confirmed the significant impact of US and ozonation processes on the use of biochar as an additive in biogas production. The highest biogas outputs 1059 mL/g VS and 1054 mL/g VS) were achieved when 50 mg of SSDB and 150 mg of OSDB were added to C. linum co-digested with S. parkle.
Assuntos
Clorófitas , Linho , Ozônio , Biocombustíveis , Carvão Vegetal , AnaerobioseRESUMO
This work demonstrates the preparation of high-surface-area activated carbon (AC) from Pisum sativum pods using ZnCl2 and KOH as activating agents. The influence of CO2 and N2 gases during the carbonization process on the porosity of AC were studied. The highest specific surface area of AC was estimated at 1300 to 1500 m2/g, which presented characteristics of microporous materials. SEM micrographs revealed that chemical activation using an impregnation reagent ZnCl2 increases the porosity of the AC, which in turn leads to an increase in the surface area, and the SEM image showed that particle size diameter ranged between 48.88 and 69.95 nm. The performance of prepared AC for adsorption of Acid Orange 7 (AO7) dye was tested. The results showed that the adsorption percentage by AC (2.5 g/L) was equal to 94.76% after just 15 min, and the percentage of removal increased to be ~100% after 60 min. The maximum adsorption capacity was 473.93 mg g-1. A Langmuir model (LM) shows the best-fitted equilibrium isotherm, and the kinetic data fitted better to the pseudo-second-order and Film diffusion models. The removal of AO7 dye using AC from Pisum sativum pods was optimized using a response factor model (RSM), and the results were reported.
Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Compostos Azo , Benzenossulfonatos , Concentração de Íons de Hidrogênio , Cinética , Pisum sativum , Água , Poluentes Químicos da Água/análiseRESUMO
The research studied the effects of dietary supplementation with Camelina sativa fresh forage on the chemical and fatty acid composition of milk and Caciotta cheese, and its sensory properties. Twenty Ionica goats were randomly assigned to the following two groups (n = 10): the control received a traditional forage mixture (Avena sativa, 70%; Vicia sativa, 20%; Trifolium spp., 10%), while the experimental group was given Camelina sativa fresh forage (CAM). All of the dams grazed on pasture and received a commercial feed (500 g/head/day) at housing. The milk from the CAM group showed a higher (p < 0.05) content of dry matter, fat, lactose and concentrations of C6:0, C11:0, C14:0, C18:2 n-6, CLA and PUFA, while lower (p < 0.05) amounts of C12:0, C18:0 and saturated long chain FA (SLCFA). The Caciotta cheese from the CAM group showed a greater (p < 0.05) content of n-6 FA and n-6/n-3 ratio, although close to four, thus resulting adequate under the nutritional point of view. The overall liking, odour, taste, hardness, solubility and "goaty" flavour were better (p < 0.05) in the CAM cheeses. Further investigation would be advisable in order to evaluate the effect of feeding Camelina forage obtained from different phenological stages, and the application of ensiling techniques.
RESUMO
For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but measured data are usually not available especially when dealing with legacy soil data. It is possible to estimate BD by applying pedotransfer function (PTF). We applied different estimation methods with the aim to define a suitable PTF for BD of arable land for the Mediterranean Basin, which has peculiar climate features that may influence the soil carbon sequestration. To improve the existing BD estimation methods, we used a set of public climatic and topographic data along with the soil texture and organic carbon data. The present work consisted of the following steps: i) development of three PTFs models separately for top (0-0.4 m) and subsoil (0.4-1.2 m), ii) a 10-fold cross-validation, iii) model transferability using an external dataset derived from published data. The development of the new PTFs was based on the training dataset consisting of World Soil Information Service (WoSIS) soil profile data, climatic data from WorldClim at 1 km spatial resolution and Shuttle Radar Topography Mission (SRTM) digital elevation model at 30 m spatial resolution. The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple Linear Regression backward stepwise (MLR-BS), and Artificial Neural Network (ANN). The predictions of the newly developed PTFs were compared with the BD calculated using the PTF proposed by Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset. For the topsoil training dataset (N = 129), MLR-S, MLR-BS and ANN had a R2 0.35, 0.58 and 0.86, respectively. For the model transferability, the three PTFs applied to the external topsoil dataset (N = 59), achieved R2 values of 0.06, 0.03 and 0.41. For the subsoil training dataset (N = 180), MLR-S, MLR-BS and ANN the R2 values were 0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset (N = 29), the R2 values were 0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, resulted in an intermediate performance compared to calibration and validation with the external dataset. The new ANN PTF outperformed MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. Further improvements may be achieved by additionally considering the time of sampling, agricultural soil management and cultivation practices in predictive models.
RESUMO
Conservative agriculture includes a range of management strategies with low energy inputs such as no-tillage, minimum tillage, and low application of fertilizers. Weed flora in arable fields is strictly affected by agronomic practices such as tillage and fertilization management. This study was conducted seven years after the beginning of a long-term-durum wheatâ»faba bean-rotation. It analyzes the combined effects on the soil seed bank of three different tillage systems (conservative, reduced, and conventional tillage) and two levels of nitrogen fertilization. The effects were investigated both using stepwise discriminant analysis and analysis of variance in order to find statistical differences among main factors and their interactions. The seed bank of Conyza canadensis, Papaver rhoeas, Solanum nigrum, Fallopia convolvulus, and Fumaria officinalis was higher in conservative or reduced tillage plots. The magnitude of the response to nitrogen supply varied among weed species. Conyza canadensis seemed to be favored by low nitrogen supply, whereas Sinapis arvensis by higher doses of nitrogen. Anagallis arvensis showed the lowest seed bank in conventionally tilled plots, without distinction of nitrogen supply. The results suggest that different tillage systems and, to a lesser extent, different nitrogen supply, produce changes in the seed bank size and composition, along the soil profile.
RESUMO
This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.
Assuntos
Bactérias/isolamento & purificação , Endófitos/isolamento & purificação , Ácido Láctico/metabolismo , Triticum/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Fermentação , Farinha/microbiologia , Microbiota , Análise de Sequência de DNARESUMO
BACKGROUND: Following on from recent advances in plant AsA biosynthesis there is increasing interest in elucidating the factors contributing to the L-ascorbic acid (AsA) content of edible crops. One main objective is to establish whether in sink organs such as fruits and tubers, AsA is synthesised in situ from imported photoassimilates or synthesised in source tissues and translocated via the phloem. In the current work we test the hypothesis that long-distance transport is involved in AsA accumulation within the potato tuber, the most significant source of AsA in the European diet. RESULTS: Using the EDTA exudation technique we confirm the presence of AsA in the phloem of potato plants and demonstrate a correlation between changes in the AsA content of source leaves and that of phloem exudates. Comparison of carboxyflourescein and AgNO3 staining is suggestive of symplastic unloading of AsA in developing tubers. This hypothesis was further supported by the changes in AsA distribution during tuber development which closely resembled those of imported photoassimilates. Manipulation of leaf AsA content by supply of precursors to source leaves resulted in increased AsA content of developing tubers. CONCLUSION: Our data provide strong support to the hypothesis that long-distance transport of AsA occurs in potato. We also show that phloem AsA content and AsA accumulation in sink organs can be directly increased via manipulation of AsA content in the foliage. We are now attempting to establish the quantitative contribution of imported AsA to overall AsA accumulation in developing potato tubers via transgenic approaches.