Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 14(6): 230439, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38862022

RESUMO

Volatile low complexity regions (LCRs) are a novel source of adaptive variation, functional diversification and evolutionary novelty. An interplay of selection and mutation governs the composition and length of low complexity regions. High %GC and mutations provide length variability because of mechanisms like replication slippage. Owing to the complex dynamics between selection and mutation, we need a better understanding of their coexistence. Our findings underscore that positively selected sites (PSS) and low complexity regions prefer the terminal regions of genes, co-occurring in most Tetrapoda clades. We observed that positively selected sites within a gene have position-specific roles. Central-positively selected site genes primarily participate in defence responses, whereas terminal-positively selected site genes exhibit non-specific functions. Low complexity region-containing genes in the Tetrapoda clade exhibit a significantly higher %GC and lower ω (dN/dS: non-synonymous substitution rate/synonymous substitution rate) compared with genes without low complexity regions. This lower ω implies that despite providing rapid functional diversity, low complexity region-containing genes are subjected to intense purifying selection. Furthermore, we observe that low complexity regions consistently display ubiquitous prevalence at lower purity levels, but exhibit a preference for specific positions within a gene as the purity of the low complexity region stretch increases, implying a composition-dependent evolutionary role. Our findings collectively contribute to the understanding of how genetic diversity and adaptation are shaped by the interplay of selection and low complexity regions in the Tetrapoda clade.


Assuntos
Evolução Molecular , Seleção Genética , Animais , Mutação , Filogenia , Proteínas/genética , Proteínas/química , Composição de Bases
2.
Genes Immun ; 23(7): 218-234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36203090

RESUMO

Functional diversification, a higher evolutionary rate, and intense positive selection help a limited number of immune genes interact with many pathogens. Repeats in protein-coding regions are a well-known source of functional diversification, adaptive variation, and evolutionary novelty in a short time. Repeats play a crucial role in biochemical functions like functional diversification of transcription regulation, protein kinases, cell adhesion, signaling pathways, morphogenesis, DNA repair, recombination, and RNA processing. Repeat length variation can change the associated protein's interaction, efficacy, and overall protein network. Repeats have an intrinsic unstable nature and can potentially evolve rapidly and expedite the acquisition of complex phenotypic traits and functions. Because of their ability to generate rapid, adaptive variations over short evolutionary distances, repeats are considered "tuning knobs." Repeat length variation in specific genes, like RUNX2 and ALX4, is associated with morphological and physiological changes across vertebrates. Here we study repeat length variation as a potent source of species-specific immune diversification across several clades of tetrapods. Moreover, we provide a clade-wise comprehensive list of immune genes with repeat types for future studies of morphological/evolutionary changes within species groups. We observe significant repeat length variation of FASLG and C1QC in Rodentia and Primates' contrasting species groups, respectively.


Assuntos
Especificidade da Espécie , Animais
3.
Sci Rep ; 11(1): 24437, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34952909

RESUMO

Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Animais , Humanos , Oxirredução , Fosforilação Oxidativa
4.
Immunogenetics ; 72(9-10): 507-515, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33247773

RESUMO

The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.


Assuntos
Galinhas/genética , Evolução Molecular , Filogenia , Plasminogênio/metabolismo , Receptores de Superfície Celular/deficiência , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Genoma , Receptores de Superfície Celular/genética , Homologia de Sequência
5.
J Mol Evol ; 87(7-8): 209-220, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31372666

RESUMO

The CYP8B1 gene is known to catalyse reactions that determine the ratio of primary bile salts and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-mole rats, elephants and manatees using forward genomics approaches. We screened the CYP8B1 gene sequence of more than 200 species and test for relaxation of selection along each terminal branch. The need for retaining a functional copy of the CYP8B1 gene is established by the presence of a conserved open reading frame across most species screened in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied by an exceptional ten amino acid extension at the C-terminal end through a single base frame-shift deletion. We also verify that the coding frame disrupting mutations previously reported in the elephant are correct, are shared by extinct Elephantimorpha species and coincide with the dietary switch to herbivory. Relaxation of selection in the CYP8B1 gene of the wombat (Vombatus ursinus) also corresponds to drastic change in diet. In summary, our forward genomics-based screen of bird and mammal species identifies recurrent changes in the selection landscape of the CYP8B1 gene concomitant with a change in dietary lipid content.


Assuntos
Esteroide 12-alfa-Hidroxilase/genética , Esteroide 12-alfa-Hidroxilase/metabolismo , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Aves/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Dieta , Evolução Molecular , Metabolismo dos Lipídeos , Lipídeos , Mamíferos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA