Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 10(8): 1383-1396, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37350320

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) is an X-linked disorder resulting in progressive muscle weakness and atrophy, cardiomyopathy, and in late stages, cardiorespiratory impairment, and death. As treatments for DMD have expanded, a DMD newborn screening (NBS) pilot study was conducted in New York State to evaluate the feasibility and benefit of NBS for DMD and to provide an early pre-symptomatic diagnosis. METHODS: At participating hospitals, newborns were recruited to the pilot study, and consent was obtained to screen the newborn for DMD. The first-tier screen measured creatine kinase-MM (CK-MM) in dried blood spot specimens submitted for routine NBS. Newborns with elevated CK-MM were referred for genetic counseling and genetic testing. The latter included deletion/duplication analysis and next-generation sequencing (NGS) of the DMD gene followed by NGS for a panel of neuromuscular conditions if no pathogenic variants were detected in the DMD gene. RESULTS: In the two-year pilot study, 36,781 newborns were screened with CK-MM. Forty-two newborns (25 male and 17 female) were screen positive and referred for genetic testing. Deletions or duplications in the DMD gene were detected in four male infants consistent with DMD or Becker muscular dystrophy. One female DMD carrier was identified. INTERPRETATION: This study demonstrated that the state NBS program infrastructure and screening technologies we used are feasible to perform NBS for DMD. With an increasing number of treatment options, the clinical utility of early identification for affected newborns and their families lends support for NBS for this severe disease.


Assuntos
Distrofia Muscular de Duchenne , Lactente , Humanos , Masculino , Recém-Nascido , Feminino , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Triagem Neonatal/métodos , Projetos Piloto , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala
2.
Int J Neonatal Screen ; 8(2)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35466194

RESUMO

Seven months after the launch of a pilot study to screen newborns for Duchenne Muscular Dystrophy (DMD) in New York State, New York City became an epicenter of the coronavirus disease 2019 (COVID-19) pandemic. All in-person research activities were suspended at the study enrollment institutions of Northwell Health and NewYork-Presbyterian Hospitals, and study recruitment was transitioned to 100% remote. Pre-pandemic, all recruitment was in-person with research staff visiting the postpartum patients 1-2 days after delivery to obtain consent. With the onset of pandemic, the multilingual research staff shifted to calling new mothers while they were in the hospital or shortly after discharge, and consent was collected via emailed e-consent links. With return of study staff to the hospitals, a hybrid approach was implemented with in-person recruitment for babies delivered during the weekdays and remote recruitment for babies delivered on weekends and holidays, a cohort not recruited pre-pandemic. There was a drop in the proportion of eligible babies enrolled with the transition to fully remote recruitment from 64% to 38%. In addition, the proportion of babies enrolled after being approached dropped from 91% to 55%. With hybrid recruitment, the proportion of eligible babies enrolled (70%) and approached babies enrolled (84%) returned to pre-pandemic levels. Our experience adapting our study during the COVID-19 pandemic led us to develop new recruitment strategies that we continue to utilize. The lessons learned from this pilot study can serve to help other research studies adapt novel and effective recruitment methods.

3.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32376988

RESUMO

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.


Assuntos
Anormalidades Múltiplas/genética , Colágenos Fibrilares/genética , Efeito Fundador , Luxação do Quadril/genética , Escoliose/genética , Anormalidades Múltiplas/patologia , Adolescente , Animais , Desenvolvimento Ósseo , Criança , Pré-Escolar , Consanguinidade , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Colágenos Fibrilares/metabolismo , Frequência do Gene , Luxação do Quadril/patologia , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Linhagem , Escoliose/patologia , Síndrome
4.
Hum Genet ; 134(1): 97-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326669

RESUMO

Recently, de novo heterozygous loss-of-function mutations in beta-catenin (CTNNB1) were described for the first time in four individuals with intellectual disability (ID), microcephaly, limited speech and (progressive) spasticity, and functional consequences of CTNNB1 deficiency were characterized in a mouse model. Beta-catenin is a key downstream component of the canonical Wnt signaling pathway. Somatic gain-of-function mutations have already been found in various tumor types, whereas germline loss-of-function mutations in animal models have been shown to influence neuronal development and maturation. We report on 16 additional individuals from 15 families in whom we newly identified de novo loss-of-function CTNNB1 mutations (six nonsense, five frameshift, one missense, two splice mutation, and one whole gene deletion). All patients have ID, motor delay and speech impairment (both mostly severe) and abnormal muscle tone (truncal hypotonia and distal hypertonia/spasticity). The craniofacial phenotype comprised microcephaly (typically -2 to -4 SD) in 12 of 16 and some overlapping facial features in all individuals (broad nasal tip, small alae nasi, long and/or flat philtrum, thin upper lip vermillion). With this detailed phenotypic characterization of 16 additional individuals, we expand and further establish the clinical and mutational spectrum of inactivating CTNNB1 mutations and thereby clinically delineate this new CTNNB1 haploinsufficiency syndrome.


Assuntos
Deficiência Intelectual/genética , Microcefalia/genética , Mutação/genética , beta Catenina/genética , Criança , Pré-Escolar , Feminino , Seguimentos , Haploinsuficiência , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Síndrome
5.
Hum Mutat ; 31(8): E1587-93, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20648631

RESUMO

Cleidocranial Dysplasia (CCD) is an autosomal dominant skeletal disorder characterized by hypoplastic or absent clavicles, increased head circumference, large fontanels, dental anomalies, and short stature. Hand malformations are also common. Mutations in RUNX2 cause CCD, but are not identified in all CCD patients. In this study we screened 135 unrelated patients with the clinical diagnosis of CCD for RUNX2 mutations by sequencing analysis and demonstrated 82 mutations 48 of which were novel. By quantitative PCR we screened the remaining 53 unrelated patients for copy number variations in the RUNX2 gene. Heterozygous deletions of different size were identified in 13 patients, and a duplication of the exons 1 to 4 of the RUNX2 gene in one patient. Thus, heterozygous deletions or duplications affecting the RUNX2 gene may be present in about 10% of all patients with a clinical diagnosis of CCD which corresponds to 26% of individuals with normal results on sequencing analysis. We therefore suggest that screening for intragenic deletions and duplications by qPCR or MLPA should be considered for patients with CCD phenotype in whom DNA sequencing does not reveal a causative RUNX2 mutation.


Assuntos
Displasia Cleidocraniana/genética , Deleção de Genes , Análise Mutacional de DNA , Heterozigoto , Humanos , Reação em Cadeia da Polimerase
6.
Am J Med Genet B Neuropsychiatr Genet ; 147B(4): 411-7, 2008 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-18384058

RESUMO

Autism spectrum disorder (ASD) is a severe developmental disorder of the central nervous system characterized by impairments in social interaction, communication, and range of interests and behaviors. The syndrome's prevalence is estimated to be as high as 1 in 150 American children yet its etiology remains largely unknown. Examination of observed cytogenetic variants in individuals with ASD may identify genes involved in its pathogenesis. As part of a multidisciplinary study, an apparently balanced de novo translocation between chromosomes 2 and 9 [46,XY,t(2;9)(p13;p24)] was identified in a subject with pervasive developmental disorder not otherwise specified (PDD-NOS), and no distinctive dysmorphic features. Molecular characterization of the rearrangement revealed direct interruption of the RAB11 family interacting protein 5 (RAB11FIP5) gene. RAB11FIP5 is a Rab effector involved in protein trafficking from apical recycling endosomes to the apical plasma membrane. It is ubiquitously expressed and reported to contribute to both neurotransmitter release and neurotransmitter uptake at the synaptic junction. Detailed analysis of the rearrangement breakpoints suggests that the reciprocal translocation may have formed secondary to incorrect repair of double strand breaks (DSBs) by nonhomologous end-joining (NHEJ).


Assuntos
Transtorno Autístico/genética , Proteínas de Transporte/genética , Rearranjo Gênico , Proteínas Mitocondriais/genética , Translocação Genética , Proteínas Adaptadoras de Transdução de Sinal , Transtorno Autístico/etiologia , Criança , Transtornos Globais do Desenvolvimento Infantil , Cromossomos Humanos Par 2 , Cromossomos Humanos Par 9 , Testes Genéticos , Humanos , Masculino
7.
Am J Med Genet A ; 143A(6): 594-8, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17318848

RESUMO

X-linked hydrocephalus with aqueductal stenosis (HSAS) is caused by mutation or deletion of the L1 cell adhesion molecule gene (L1CAM) at Xq28. Central diabetes insipidus (CDI) can arise as a consequence of resultant hypothalamic dysfunction from hydrocephalus and must be distinguished from nephrogenic diabetes insipidus (NDI) by exogenous vasopressin response. Causes of NDI are heterogeneous and include mutation or deletion of the arginine vasopressin receptor 2 gene (AVPR2), which is located approximately 29 kb telomeric to L1CAM. We identified a patient with both HSAS and NDI where DNA sequencing failure suggested the possibility of a contiguous gene deletion. A 32.7 kb deletion mapping from L1CAM intron1 to AVPR2 exon2 was confirmed. A 90 bp junctional insertion fragment sharing short direct repeat homology with flanking sequences was identified. To our knowledge this is the first reported case of an Xq28 microdeletion involving both L1CAM and AVPR2, defining a new contiguous gene syndrome comprised of HSAS and NDI. Contiguous gene deletion should be considered as a mechanism for all patients presenting with hydrocephalus and NDI.


Assuntos
Anormalidades Múltiplas/genética , Diabetes Insípido Nefrogênico/patologia , Deleção de Genes , Hidrocefalia/patologia , Molécula L1 de Adesão de Célula Nervosa/genética , Receptores de Vasopressinas/genética , Anormalidades Múltiplas/patologia , Sequência de Bases , Cromossomos Humanos X , Análise Mutacional de DNA , Evolução Fatal , Ligação Genética , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutagênese Insercional , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA