Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 21(5): 628-639, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715493

RESUMO

BACKGROUND: Recurrent specific mutations in evolutionarily conserved histone 3 (H3) variants drive pediatric high-grade gliomas (HGGs), but little is known about their downstream effects. The aim of this study was to identify genes involved in the detrimental effects of mutant H3.3-K27M, the main genetic driver in lethal midline HGG, in a transgenic Drosophila model. METHODS: Mutant and wild-type histone H3.3-expressing flies were generated using a φC31-based integration system. Genetic modifier screens were performed by crossing H3.3-K27M expressing driver strains and 194 fly lines expressing short hairpin RNA targeting genes selected based on their potential role in the detrimental effects of mutant H3. Expression of the human orthologues of genes with functional relevance in the fly model was validated in H3-K27M mutant HGG. RESULTS: Ubiquitous and midline glia-specific expression of H3.3-K27M but not wild-type H3.3 caused pupal lethality, morphological alterations, and decreased H3K27me3. Knockdown of 17 candidate genes shifted the lethal phenotype to later stages of development. These included histone modifying and chromatin remodeling genes as well as genes regulating cell differentiation and proliferation. Notably, several of these genes were overexpressed in mutant H3-K27M mutated HGG. CONCLUSIONS: Rapid screening, identification, and validation of relevant targets in "oncohistone" mediated pathogenesis have proven a challenge and a barrier to providing novel therapies. Our results provide further evidence on the role of chromatin modifiers in the genesis of H3.3-K27M. Notably, they validate Drosophila as a model system for rapid identification of relevant genes functionally involved in the detrimental effects of H3.3-K27M mutagenesis.


Assuntos
Biomarcadores Tumorais/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Glioma/genética , Histonas/genética , Mutação , RNA Interferente Pequeno/genética , Animais , Drosophila melanogaster/metabolismo , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Humanos
2.
J Neurooncol ; 141(1): 43-55, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30446899

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumor (ATRT) is a highly malignant brain tumor predominantly arising in infants. Mutations of SWI/SNF chromatin remodeling complex members SMARCB1/INI1 or (rarely) SMARCA4/Brg1 are the sole recurrent genetic lesions. Epigenetic studies revealed a large number of genes predicted to be affected by differential histone modifications in ATRT, but the role of these genes in the biology of ATRT remains uncertain. We therefore aimed at exploring the role of these genes in the detrimental effects of SMARCB1-deficiency. METHODS: The functional relevance of 1083 genes predicted to be affected by epigenetic alterations in ATRT was examined in vivo using a Drosophila melanogaster model of SMARCB1-deficiency. Human orthologues of genes whose knockdown modified the phenotype in the Gal4-UAS fly model were further examined in ATRT samples and SMARCB1-deficient rhabdoid tumor cells. RESULTS: Knockdown of Snr1, the fly orthologue of SMARCB1, resulted in a lethal phenotype and epigenetic alterations in the fly model. The lethal phenotype was shifted to later stages of development upon additional siRNA knockdown of 89 of 1083 genes screened in vivo. These included TGF-beta receptor signaling pathway related genes, e.g. CG10348, the fly orthologue of transcriptional regulator PRDM16. Subsequently, PRDM16 was found to be over-expressed in ATRT samples and knockdown of PRDM16 in SMARCB1-deficient rhabdoid tumor cells reduced proliferation. CONCLUSIONS: These results suggest that a subset of genes affected by differential histone modification in ATRT is involved in the detrimental effects of SMARCB1-deficiency and also relevant in the biology of ATRT.


Assuntos
Neoplasias Encefálicas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Epigênese Genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Drosophila melanogaster , Histonas/metabolismo , Humanos
3.
J Neurooncol ; 131(3): 477-484, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28108836

RESUMO

Atypical teratoid/rhabdoid tumors (ATRT) are highly malignant brain tumors arising in young children. The majority of ATRT is characterized by inactivation of the chromatin remodeling complex member SMARCB1 (INI1/hSNF5). Little is known, however, on downstream pathways involved in the detrimental effects of SMARCB1 deficiency which might also represent targets for treatment. Using Drosophila melanogaster and the Gal4-UAS system, modifier screens were performed in order to identify the role of SMAD dependent signaling in the lethal phenotype associated with knockdown of snr1, the fly homolog of SMARCB1. Expression and functional role of human homologs was next investigated in ATRT tumor samples and SMARCB1-deficient rhabdoid tumor cells. The lethal phenotype associated with snr1 knockdown in Drosophila melanogaster could be shifted to later stages of development upon additional knockdown of several decapentaplegic pathway members including Smox, and Med. Similarly, the transforming growth factor beta (TGFbeta) receptor type I kinase inhibitor SB431542 ameliorated the detrimental effect of snr1 knockdown in the fruit fly. Examination of homologs of candidate decapentaplegic pathway members in human SMARCB1-deficent ATRT samples revealed SMAD3 and SMAD6 to be over-expressed. In SMARCB1-deficent rhabdoid tumor cells, siRNA-mediated silencing of SMAD3 or SMAD6 expression reduced TGFbeta signaling activity and resulted in decreased proliferation. Similar results were obtained upon pharmacological inhibition of TGFbeta signaling using SB431542. Our data suggest that SMAD dependent signaling is involved in the detrimental effects of SMARCB1-deficiency and provide a rationale for the investigation of TGFbeta targeted treatments in ATRT.


Assuntos
Proteínas de Drosophila/metabolismo , Tumor Rabdoide/metabolismo , Proteína SMARCB1/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Teratoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Benzamidas/administração & dosagem , Dioxóis/administração & dosagem , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Humanos , Masculino , RNA Mensageiro/metabolismo , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Proteína Smad3/metabolismo , Proteína Smad6/metabolismo , Teratoma/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/metabolismo
4.
Biol Open ; 3(6): 444-52, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24795146

RESUMO

During spermiogenesis, haploid spermatids undergo extensive chromatin remodeling events in which histones are successively replaced by more basic protamines to generate highly compacted chromatin. Here we show for the first time that H3K79 methylation is a conserved feature preceding the histone-to-protamine transition in Drosophila melanogaster and rat. During Drosophila spermatogenesis, the Dot1-like methyltransferase Grappa (Gpp) is primarily expressed in canoe stage nuclei. The corresponding H3K79 methylation is a histone modification that precedes the histone-to-protamine transition and correlates with histone H4 hyperacetylation. When acetylation was inhibited in cultured Drosophila testes, nuclei were smaller and chromatin was compact, Gpp was little synthesized, H3K79 methylation was strongly reduced, and protamines were not synthesized. The Gpp isoform Gpp-D has a unique C-terminus, and Gpp is essential for full fertility. In rat, H3K79 methylation also correlates with H4 hyperacetylation but not with active RNA polymerase II, which might point towards a conserved function in chromatin remodeling during the histone-to-protamine transition in both Drosophila and rat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA