Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14498, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189817

RESUMO

BACKGROUND: Bolus materials have been used for decades in radiotherapy. Most frequently, these materials are utilized to bring dose closer to the skin surface to cover superficial targets optimally. While cavity filling, such as nasal cavities, is desirable, traditional commercial bolus is lacking, requiring other solutions. Recently, investigators have worked on utilizing 3D printing technology, including commercially available solutions, which can overcome some challenges with traditional bolus. PURPOSE: To utilize failure modes and effects analysis (FMEA) to successfully implement a comprehensive 3D printed bolus solution to replace commercial bolus in our clinic using a series of open-source (or free) software products. METHODS: 3D printed molds for bespoke bolus were created by exporting the DICOM structures of the bolus designed in the treatment planning system and manipulated to create a multipart mold for 3D printing. A silicone (Ecoflex 00-30) mixture is poured into the mold and cured to form the bolus. Molds for sheet bolus of five thicknesses were also created. A comprehensive FMEA was performed to guide workflow adjustments and QA steps. RESULTS: The process map identified 39 and 30 distinct steps for the bespoke and flat sheet bolus workflows, respectively. The corresponding FMEA highlighted 119 and 86 failure modes, with 69 shared between the processes. Misunderstanding of plan intent was a potential cause for most of the highest-scoring failure modes, indicating that physics and dosimetry involvement early in the process is paramount. CONCLUSION: FMEA informed the design and implementation of QA steps to guarantee a safe and high-quality comprehensive implementation of silicone bolus from 3D printed molds. This approach allows for greater adaptability not afforded by traditional bolus, as well as potential dissemination to other clinics due to the open-source nature of the workflow.

2.
J Appl Clin Med Phys ; : e14464, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39031902

RESUMO

PURPOSE: To assess the practicality of employing a commercial knowledge-based planning tool (RapidPlan) to generate adapted intact prostate and prostate bed volumetric modulated arc therapy (VMAT) plans on iterative cone-beam computed tomography (iCBCT) datasets. METHODS AND MATERIALS: Intact prostate and prostate bed RapidPlan models were trained utilizing planning data from 50 and 44 clinical cases, respectively. To ensure that refined models were capable of producing adequate clinical plans with a single optimization, models were tested with 50 clinical planning CT datasets by comparing dose-volume histogram (DVH) and plan quality metric (PQM) values between clinical and RapidPlan-generated plans. The RapidPlan tool was then used to retrospectively generate adapted VMAT plans on daily iCBCT images for 20 intact prostate and 15 prostate bed cases. As before, DVH and PQM metrics were utilized to dosimetrically compare scheduled (iCBCT Verify) and adapted (iCBCT RapidPlan) plans. Timing data was collected to further evaluate the feasibility of integrating this approach within an online adaptive radiotherapy workflow. RESULTS: Model testing results confirmed the models were capable of producing VMAT plans within a single optimization that were overall improved upon or dosimetrically comparable to original clinical plans. Direct application of RapidPlan on iCBCT datasets produced satisfactory intact prostate and prostate bed plans with generally improved target volume coverage/conformality and rectal sparing relative to iCBCT Verify plans as indicated by DVH values, though bladder metrics were marginally increased on average. Average PQM values for iCBCT RapidPlans were significantly improved compared to iCBCT Verify plans. The average time required [in mm:ss] to generate adapted plans was 06:09 ± 02:06 (intact) and 07:12 ± 01:04 (bed). CONCLUSION: This study demonstrated the feasibility of leveraging RapidPlan to expeditiously generate adapted VMAT intact prostate and prostate bed plans on iCBCT datasets. In general, adapted plans were dosimetrically improved relative to scheduled plans, emphasizing the practicality of the proposed approach.

3.
Pract Radiat Oncol ; 14(5): e383-e394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38325548

RESUMO

PURPOSE: The purpose of this investigation was to evaluate the clinical applicability of a commercial artificial intelligence-driven deep learning auto-segmentation (DLAS) tool on enhanced iterative cone beam computed tomography (iCBCT) acquisitions for intact prostate and prostate bed treatments. METHODS AND MATERIALS: DLAS models were trained using 116 iCBCT data sets with manually delineated organs at risk (bladder, femoral heads, and rectum) and target volumes (intact prostate and prostate bed) adhering to institution-specific contouring guidelines. An additional 25 intact prostate and prostate bed iCBCT data sets were used for model testing. Segmentation accuracy relative to a reference structure set was quantified using various geometric comparison metrics and qualitatively evaluated by trained physicists and physicians. These results were compared with those obtained for an additional DLAS-based model trained on planning computed tomography (pCT) data sets and for a deformable image registration (DIR)-based automatic contour propagation method. RESULTS: In most instances, statistically significant differences in the Dice similarity coefficient (DSC), 95% directed Hausdorff distance, and mean surface distance metrics were observed between the models, as the iCBCT-trained DLAS model outperformed the pCT-trained DLAS model and DIR-based method for all organs at risk and the intact prostate target volume. Mean DSC values for the proposed method were ≥0.90 for these volumes of interest. The iCBCT-trained DLAS model demonstrated a relatively suboptimal performance for the prostate bed segmentation, as the mean DSC value was <0.75 for this target contour. Overall, 90% of bladder, 93% of femoral head, 67% of rectum, and 92% of intact prostate contours generated by the proposed method were deemed clinically acceptable based on qualitative scoring, and approximately 63% of prostate bed contours required moderate or major manual editing to adhere to institutional contouring guidelines. CONCLUSIONS: The proposed method presents the potential for improved segmentation accuracy and efficiency compared with the DIR-based automatic contour propagation method as commonly applied in CBCT-based dose evaluation and calculation studies.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Aprendizado Profundo , Neoplasias da Próstata , Humanos , Masculino , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Pelve/diagnóstico por imagem , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco
4.
Biomed Phys Eng Express ; 9(2)2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36745904

RESUMO

Purpose.To evaluate the impact of CT number calibration and imaging parameter selection on dose calculation accuracy relative to the CT planning process in thoracic treatments for on-board helical CT imaging systems used in helical tomotherapy.Methods and Materials.Direct CT number calibrations were performed with appropriate protocols for each imaging system using an electron density phantom. Large volume and SBRT treatment plans were simulated and optimized for planning CT scans of an anthropomorphic thorax phantom and transferred to registered kVCT and MVCT scans of the phantom as appropriate. Relevant DVH metrics and dose-difference maps were used to evaluate and compare dose calculation accuracy relative to the planning CT based on a variation in imaging parameters applied for the on-board systems.Results.For helical kVCT scans of the thorax phantom, median differences in DVH parameters for the large volume treatment plan were less than ±1% with dose to the target volume either over- or underestimated depending on the imaging parameters utilized for CT number calibration and thorax phantom acquisition. For the lung SBRT plan calculated on helical kVCT scans, median dose differences were up to -2.7% with a more noticeable dependence on parameter selection. For MVCT scans, median dose differences for the large volume plan were within +2% with dose to the target overestimated regardless of the imaging protocol.Conclusion.Accurate dose calculations (median errors of <±1%) using a thorax phantom simulating realistic patient geometry and scatter conditions can be achieved with images acquired with a helical kVCT system on a helical tomotherapy unit. This accuracy is considerably improved relative to that achieved with the MV-based approach. In a clinical setting, careful consideration should be made when selecting appropriate kVCT imaging parameters for this process as dose calculation accuracy was observed to vary with both parameter selection and treatment type.


Assuntos
Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Radioterapia Conformacional/métodos , Tórax
5.
Cureus ; 14(9): e29244, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36277579

RESUMO

Purpose To evaluate the imaging performance of an on-board helical kilovoltage computed tomography (kVCT) system mounted on a helical tomotherapy unit for various imaging parameters and setup conditions. Methods Images of a commonly used computed tomography (CT) image quality phantom were acquired while varying the selection of available parameters (anatomy, mode, body size) as well as phantom positioning and size. Image quality metrics (IQM) including noise, uniformity, contrast, CT number constancy, and spatial resolution were compared for parameter and setup variations.  Results The use of fine mode improved noise and contrast metrics by 20-30% compared to normal mode and by nearly a factor of two compared to the coarse mode for otherwise identical protocols. Uniformity, CT number constancy, and spatial resolution were also improved for fine mode. Thorax and pelvis anatomy protocols improved noise, uniformity, and contrast metrics by 10-20% compared to images acquired with head protocols. No significant differences in CT number constancy or spatial resolution were observed regardless of anatomy choice. Increasing body size (milliampere second (mAs)/rotation) improved each image quality metric. Vertical and lateral phantom shifts of up to ±6 cm degraded noise and contrast metrics by up to 30% relative to the isocenter while also worsening uniformity and CT number constancy. IQM were also degraded substantially with the use of annuli to increase the phantom diameter (32 cm vs. 20 cm). Despite variations in image characteristics among the investigated changes, most metrics were within manufacturer specifications when applicable. Conclusion This work demonstrates the dependence of image quality on parameter selection and setup conditions for a helical kVCT system utilized in image-guided and adaptive helical tomotherapy treatments. While the overall image quality is robust to variations in imaging parameters, care should be taken when selecting parameters as patient size increases or positioning moves from the isocenter to ensure adequate image quality is still achieved.

6.
Biomed Phys Eng Express ; 8(4)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654009

RESUMO

Objective. To evaluate the impact of image reconstruction algorithm selection, as well as imaging mode and the reconstruction interval, on image quality metrics for megavoltage computed tomography (MVCT) image acquisition for use in image-guided (IGRT) and adaptive radiotherapy (ART) on a next-generation helical tomotherapy system.Approach. A CT image quality phantom was scanned across all available acquisition modes for filtered back projection (FBP) and both iterative reconstruction (IR) algorithms available on the system. Image quality metrics including noise, uniformity, contrast, spatial resolution, and mean CT number were compared. Analysis of DICOM data was performed using ImageJ software and Python code. ANOVA single factor and Tukey's honestly significant difference post-hoc tests were utilized for statistical analysis.Main Results. Application of both IR algorithms noticeably improved noise and image contrast when compared to the FBP algorithm available on all previous-generation helical tomotherapy systems. Use of the FBP algorithm improved image uniformity and spatial resolution in the axial plane, though values for the IR algorithms were well within tolerances recommended for IGRT and/or MVCT-based ART implementation by the American Association of Physicists in Medicine (AAPM). Additionally, longitudinal resolution showed little dependence on the reconstruction algorithm, while a negligible variation in mean CT number was observed regardless of the reconstruction algorithm or acquisition parameters. Statistical analysis confirmed the significance of these results.Significance. An overall improvement in image quality for metrics most important to IGRT and ART-mainly image noise and contrast-was evident in the application of IR when compared to FBP. Furthermore, since other imaging parameters remain identical regardless of the reconstruction algorithm, this improved image quality does not come at the expense of additional patient dose or an increased scan acquisition time for otherwise identical parameters. These improvements are expected to enhance fidelity in IGRT and ART implementation.


Assuntos
Radioterapia de Intensidade Modulada , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos
7.
J Appl Clin Med Phys ; 23(6): e13648, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35570390

RESUMO

ClearRT helical kVCT imaging for the Radixact helical tomotherapy system recently received FDA approval and is available for clinical use. The system is intended to enhance image fidelity in radiation therapy treatment planning and delivery compared to the prior MV-based onboard imaging approach. The purpose of this work was to characterize the imaging performance of this system and compare this performance with that of clinical systems used in image-guided and/or adaptive radiotherapy (ART) or computed tomography (CT) simulation, including Radixact MVCT, TomoTherapy MVCT, Varian TrueBeam kV OBI CBCT, and the Siemens SOMATOM Definition Edge kVCT. A CT image quality phantom was scanned across clinically relevant acquisition modes for each system to evaluate image quality metrics, including noise, uniformity, contrast, spatial resolution, and CT number linearity. Similar noise levels were observed for ClearRT and Siemens Edge, whereas noise for the other systems was ∼1.5-5 times higher. Uniformity was best for Siemens Edge, whereas most scans for ClearRT exhibited a slight "cupping" or "capping" artifact. The ClearRT and Siemens Edge performed best for contrast metrics, which included low-contrast visibility and contrast-to-noise ratio evaluations. Spatial resolution was best for TrueBeam and Siemens Edge, whereas the three kVCT systems exhibited similar CT number linearity. Overall, these results provide an initial indication that ClearRT image quality is adequate for image guidance in radiotherapy and sufficient for delineating anatomic structures, thus enabling its use for ART. ClearRT also showed significant improvement over MVCT, which was previously the only onboard imaging modality available on Radixact. Although the acquisition of these scans does come at the cost of additional patient dose, reported CTDI values indicate a similar or generally reduced machine output for ClearRT compared to the other systems while maintaining comparable or improved image quality overall.


Assuntos
Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA