Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 10(1): 2830, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249303

RESUMO

Cytomegalovirus is a DNA-encoded ß-herpesvirus that induces STING-dependent type 1 interferon responses in macrophages and uses myeloid cells as a vehicle for dissemination. Here we report that STING knockout mice are as resistant to murine cytomegalovirus (MCMV) infection as wild-type controls, whereas mice with a combined Toll-like receptor/RIG-I-like receptor/STING signaling deficiency do not mount type 1 interferon responses and succumb to the infection. Although STING alone is dispensable for survival, early IFN-ß induction in Kupffer cells is STING-dependent and controls early hepatic virus propagation. Infection experiments with an inducible reporter MCMV show that STING constrains MCMV replication in myeloid cells and limits viral dissemination via these cells. By contrast, restriction of viral dissemination from hepatocytes to other organs is independent of STING. Thus, during MCMV infection STING is involved in early IFN-ß induction in Kupffer cells and the restriction of viral dissemination via myeloid cells, whereas it is dispensable for survival.


Assuntos
Infecções por Herpesviridae/veterinária , Interferon beta/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Muromegalovirus/fisiologia , Células Mieloides/metabolismo , Doenças dos Roedores/metabolismo , Animais , Feminino , Hepatócitos/metabolismo , Hepatócitos/virologia , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Interferon beta/genética , Células de Kupffer/metabolismo , Células de Kupffer/virologia , Fígado/virologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus/genética , Células Mieloides/virologia , Doenças dos Roedores/genética , Doenças dos Roedores/virologia , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
3.
Int J Med Microbiol ; 309(5): 307-318, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31178418

RESUMO

Mycobacterium abscessus (MAB) is an emerging, rapidly growing non-tuberculous Mycobacterium causing therapy-resistant pulmonary disease especially in patients with cystic fibrosis (CF). Smooth and rough colony type MAB can be isolated from infected patients whereby rough colony type MAB are more often associated with severe disease. Disease severity is also associated with an alternated type I interferon (IFN-I) response of the MAB-infected patients. However the relevance of this response for the outcome of MAB infection is still unknown. In this study, we analyzed the IFNß expression of murine macrophages infected with a MAB rough colony strain (MAB-R) isolated from a patient with progressive CF and compared it to macrophages infected with the MAB smooth colony type reference strain (MAB-S). We found that MAB-R infected macrophages expressed significantly more IFNß mRNA and protein than MAB-S infected macrophages. Higher IFNß induction by MAB-R was associated with higher TNF expression and intracellular killing while low IFNß induction was associated with lower TNF expression and persistence of MAB-S. IFNß induction was independent of the intracellular cGAS-STING recognition pathway. MAB appeared to be recognized extracellularly and induced IFNß expression via TLR2-TLR4-MyD88-TRIF-IRF3 dependent pathways. By using macrophages lacking the IFN-I receptor we demonstrate that MAB induced IFN-I response essentially contributed to restricting MAB-R and MAB-S infections by activating macrophage Nos2 expression and nitric oxide production. Thus IFN-I seem to influence the intrinsic ability of macrophages to control MAB infections. As MAB persists over long time periods in susceptible patients, our findings suggest that virulence of MAB strains is promoted by an insufficient IFN-I response of the host.


Assuntos
Interferon beta/imunologia , Macrófagos/microbiologia , Mycobacterium abscessus/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Óxido Nítrico/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/imunologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Óxido Nítrico Sintase Tipo II/genética , Escarro/microbiologia
4.
J Hepatol ; 70(4): 722-734, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582979

RESUMO

BACKGROUND & AIMS: Fibrosis, a cardinal feature of a dysfunctional liver, significantly contributes to the ever-increasing mortality due to end-stage chronic liver diseases. The crosstalk between hepatocytes and hepatic stellate cells (HSCs) plays a key role in the progression of fibrosis. Although ample efforts have been devoted to elucidate the functions of HSCs during liver fibrosis, the regulatory functions of hepatocytes remain elusive. METHODS: Using an unbiased functional microRNA (miRNA) screening, we investigated the ability of hepatocytes to regulate fibrosis by fine-tuning gene expression via miRNA modulation. The in vivo functional analyses were performed by inhibiting miRNA in hepatocytes using adeno-associated virus in carbon-tetrachloride- and 3,5-di-diethoxycarbonyl-1,4-dihydrocollidine-induced liver fibrosis. RESULTS: Blocking miRNA-221-3p function in hepatocytes during chronic liver injury facilitated recovery of the liver and faster resolution of the deposited extracellular matrix. Furthermore, we demonstrate that reduced secretion of C-C motif chemokine ligand 2, as a result of post-transcriptional regulation of GNAI2 (G protein alpha inhibiting activity polypeptide 2) by miRNA-221-3p, mitigates liver fibrosis. CONCLUSIONS: Collectively, miRNA modulation in hepatocytes, an easy-to-target cell type in the liver, may serve as a potential therapeutic approach for liver fibrosis. LAY SUMMARY: Liver fibrosis majorly contributes to mortality resulting from various liver diseases. We discovered a small RNA known as miRNA-221-3p, whose downregulation in hepatocytes results in reduced liver fibrosis. Thus, inhibition of miRNA-221-3p may serve as one of the therapeutic approaches for treatment of liver fibrosis.


Assuntos
Hepatócitos/metabolismo , Cirrose Hepática Experimental/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Tetracloreto de Carbono/farmacologia , Dependovirus/genética , Regulação para Baixo/genética , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica , Células HEK293 , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transfecção
5.
Virulence ; 9(1): 1669-1684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403913

RESUMO

Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-ß. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.


Assuntos
Citocinas/imunologia , Citomegalovirus , Macrófagos/imunologia , Anticorpos Neutralizantes/imunologia , Técnicas de Cocultura , Meios de Cultura , Citocinas/antagonistas & inibidores , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Interferon Tipo I/imunologia , Interferon beta/imunologia , Macrófagos/virologia , Fator de Necrose Tumoral alfa/imunologia , Replicação Viral/efeitos dos fármacos
6.
PLoS Pathog ; 14(8): e1007235, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30075026

RESUMO

During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-ß reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-ß responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B/imunologia , Hepatócitos/metabolismo , Interferon beta/genética , Fígado/patologia , Receptor de Interferon alfa e beta/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/crescimento & desenvolvimento , Humanos , Interferon beta/metabolismo , Fígado/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/virologia , Receptor de Interferon alfa e beta/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Células Vero , Carga Viral/genética , Carga Viral/imunologia
7.
J Hepatol ; 68(4): 682-690, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29274730

RESUMO

BACKGROUND & AIM: Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. METHODS: Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-ß induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1+/gfp mice revealed the origin of reconstituted KC. Finally, mixed bone marrow chimeric mice were studied to specifically analyze the effect of IFNAR triggering on liver infiltrating monocytes. RESULTS: VACV infection induced local IFN-ß responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. CONCLUSION: Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis. LAY SUMMARY: Viral infection can cause fulminant hepatitis, which in turn is a major cause of acute liver failure. Herein, we aimed to study the role of type 1 interferon responses in acute viral hepatitis. We identified that during infection with DNA-encoded viruses, type 1 interferon receptor triggering of blood monocytes delays the development of monocyte-derived Kupffer cells. This points to new therapeutic strategies for acute viral hepatitis.


Assuntos
Hepatite Viral Animal/fisiopatologia , Células de Kupffer/fisiologia , Receptor de Interferon alfa e beta/fisiologia , Transdução de Sinais/fisiologia , Doença Aguda , Animais , Hepatite Viral Animal/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Vacínia/fisiopatologia
8.
Cell Rep ; 19(11): 2345-2356, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614719

RESUMO

Quiescent long-term hematopoietic stem cells (LT-HSCs) are efficiently activated by type I interferon (IFN-I). However, this effect remains poorly investigated in the context of IFN-I-inducing virus infections. Here we report that both vesicular stomatitis virus (VSV) and murine cytomegalovirus (MCMV) infection induce LT-HSC activation that substantially differs from the effects triggered upon injection of synthetic IFN-I-inducing agents. In both infections, inflammatory responses had to exceed local thresholds within the bone marrow to confer LT-HSC cell cycle entry, and IFN-I receptor triggering was not critical for this activation. After resolution of acute MCMV infection, LT-HSCs returned to phenotypic quiescence. However, non-acute MCMV infection induced a sustained inflammatory milieu within the bone marrow that was associated with long-lasting impairment of LT-HSC function. In conclusion, our results show that systemic virus infections fundamentally affect LT-HSCs and that also non-acute inflammatory stimuli in bone marrow donors can affect the reconstitution potential of bone marrow transplants.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Infecções/virologia , Animais , Ciclo Celular , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Camundongos , Transdução de Sinais
9.
Front Immunol ; 6: 460, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441965

RESUMO

Previous studies using purified toll-like receptor (TLR) ligands plus agonistic anti-CD40 antibodies showed that TLRs and CD40 can act synergistically on dendritic cells (DCs) to optimize T cell activation and Th1 differentiation. However, a synergistic effect of TLRs and CD40 during bacterial infection is not known. Here, we show that mice lacking the TLR adaptor MyD88 alone, or lacking both MyD88 and CD40 [double knockout (DKO) mice], are compromised in survival to Salmonella infection but have intact recruitment of neutrophils and inflammatory monocytes as well as unaltered abundance of DC subsets and DC activation in infected tissues. In contrast to infected wildtype and CD40(-/-) mice, both MyD88(-/-) mice and DKO mice lack detectable serum IFN-γ and have elevated IL-10. A synergistic effect of TLRs and CD40 was revealed in co-culture experiments where OT-II T cell proliferation was compromised when DKO DCs were pulsed with OVA protein and OVA323-339 peptide, but not with heat-killed Salmonella expressing OVA (HKSOVA), relative to MyD88(-/-) DCs. By contrast, MyD88(-/-) or DKO DCs pulsed with any of the antigens had a similar ability to induce IFN-γ that was lower than WT or CD40(-/-) DCs. DKO DCs pulsed with HKSOVA, but not with OVA or OVA323-339, had increased IL-10 relative to MyD88(-/-) DCs. Finally, HKSOVA-pulsed MyD88(-/-) and DKO DCs had similar and low induction of NFκB-dependent and -independent genes upon co-culture with OT-II cells. Overall, our data revealed that synergistic effects of CD40 and MyD88 do not influence host survival to Salmonella infection or serum levels of IFN-γ or IL-10. However, synergistic effects of MyD88 and CD40 may be apparent on some (IL-10 production) but not all (OT-II proliferation and IFN-γ production) DC functions and depend on the complexity of the antigen. Indeed, synergistic effects observed using purified ligands and well-defined antigens may not necessarily apply when complex antigens, such as live bacteria, challenge the immune system.

10.
J Virol ; 88(23): 13638-50, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25231302

RESUMO

UNLABELLED: In healthy individuals, the functional immune system effectively confines human cytomegalovirus (CMV) replication, while viral immune evasion and persistence preclude sterile immunity. Mouse CMV (MCMV) is a well-established model to study the delicate CMV-host balance. Effective control of MCMV infection depends on the induction of protective type I interferon (IFN-I) responses. Nevertheless, it is unclear whether in professional antigen-presenting cell subsets MCMV-encoded evasins inhibit the induction of IFN-I responses. Upon MCMV treatment, enhanced expression of MCMV immediate-early and early proteins was detected in bone marrow cultures of macrophages and myeloid dendritic cells compared with plasmacytoid dendritic cell cultures, whereas plasmacytoid dendritic cells mounted more vigorous IFN-I responses. Experiments with Toll-like receptor (TLR)- and/or RIG-I like helicase (RLH)-deficient cell subsets revealed that upon MCMV treatment of myeloid cells, IFN-I responses were triggered independently of TLR and RLH signaling, whereas in plasmacytoid dendritic cells, IFN-I induction was strictly TLR dependent. Macrophages and myeloid dendritic cells treated with either UV-inactivated MCMV or live MCMV that lacked the STAT2 antagonist M27 mounted significantly higher IFN-I responses than cells treated with live wild-type MCMV. In contrast, plasmacytoid dendritic cells responded similarly to UV-inactivated and live MCMV. These experiments illustrated that M27 not only inhibited IFN-I-mediated receptor signaling, but also evaded the induction of IFN responses in myeloid dendritic cells. Furthermore, we found that additional MCMV-encoded evasins were needed to efficiently shut off IFN-I responses of macrophages, but not of myeloid dendritic cells, thus further elucidating the subtle adjustment of the host-pathogen balance. IMPORTANCE: MCMV may induce IFN-I responses in fibroblasts and epithelial cells, as well as in antigen-presenting cell subsets. We focused on the analysis of IFN-I responses of antigen-presenting cell subsets, including plasmacytoid dendritic cells, myeloid dendritic cells, and macrophages, which are all triggered by MCMV to mount IFN-I responses. Interestingly, myeloid dendritic cells and macrophages, but not plasmacytoid dendritic cells, are readily MCMV infected and support viral gene expression. As expected from previous studies, plasmacytoid dendritic cells sense MCMV Toll-like receptor 9 (TLR9) dependently, whereas in myeloid cells, IFN-I induction is entirely TLR and RLH independent. MCMV-encoded M27 does not impair the IFN-I induction of plasmacytoid dendritic cells, while in myeloid dendritic cells, it reduces IFN-I responses. In macrophages, M27 plus other, not yet identified evasins profoundly inhibit the induction of IFN-I responses. Collectively, these results illustrate that MCMV has evolved diverse mechanisms to differentially modulate IFN-I responses in single immune cell subsets.


Assuntos
Células Dendríticas/imunologia , Evasão da Resposta Imune , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Muromegalovirus/imunologia , Células Mieloides/imunologia , Proteínas Virais/imunologia , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA