Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Curr Top Med Chem ; 19(22): 1962-1980, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31345151

RESUMO

Among the ophidians that inhabit the Northeast of Argentina, the genus Bothrops such as B. alternatus and B. diporus species (also known as yararás) and Crotalus durisus terrificus (named cascabel), represent the most studied snake venom for more than thirty years. These two genera of venomous snakes account for the majority of poisonous snake envenomations and therefore, constitute a medical emergency in this region. This review presents a broad description of the compiled knowledge about venomous snakebite: its pathophysiological action, protein composition, isolated toxins, toxin synergism, toxin-antitoxin cross-reaction assays. Properties of some isolated toxins support a potential pharmacological application.


Assuntos
Venenos de Serpentes/farmacologia , Toxinas Biológicas/farmacologia , Animais , Argentina , Bothrops , Crotalus , Humanos , Venenos de Serpentes/química , Venenos de Serpentes/isolamento & purificação , Toxinas Biológicas/química , Toxinas Biológicas/isolamento & purificação
2.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15730

RESUMO

Megalopygids Megalopyge lanata and Podalia orsilochus are common causative agents of accidents in agricultural workers. These accidents are provoked by dermal contact at their larval stage and are characterized by cutaneous reactions, such as burning pain, edema and erythema, typically mild and self-limited. There is very little information about their venoms and their toxicological implications on human health. Thus, we employed proteomic techniques and biological assays to characterize venoms (bristle extracts) from caterpillars of both species collected from Misiones, Argentina. The electrophoretic profiles of both venoms were substantially different, and they presented proteins related to toxicity, such as serinepeptidases, serpins and lectins. P. orsilochus venom exhibited higher caseinolytic activity than M. lanata venom, agreeing with the fact that only P. orsilochus venom hydrolyzed human fibrin(ogen). In addition, the latter shortened the clotting time triggered by calcium. While the venom of M. lanata induced a mild inflammatory lesion in mouse skin, P. orsilochus venom caused prominent necrosis, inflammatory infiltration and hemorrhage at the site of venom injection. On the other hand, P. orsilochus venom was better recognized by Lonomia obliqua antivenom, although many of its proteins could not be cross-reacted, what may explain the difference in the clinical manifestations between accidents by Podalia and those by Lonomia. Altogether, this study provides relevant information about the pathophysiological mechanisms whereby both caterpillars can induce toxicity on human beings, and paves the way for novel discovery of naturally occurring bioactive compounds.

3.
Comp Biochem Physiol C Toxicol Pharmacol, v. 216, p. 110-119, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2623

RESUMO

Megalopygids Megalopyge lanata and Podalia orsilochus are common causative agents of accidents in agricultural workers. These accidents are provoked by dermal contact at their larval stage and are characterized by cutaneous reactions, such as burning pain, edema and erythema, typically mild and self-limited. There is very little information about their venoms and their toxicological implications on human health. Thus, we employed proteomic techniques and biological assays to characterize venoms (bristle extracts) from caterpillars of both species collected from Misiones, Argentina. The electrophoretic profiles of both venoms were substantially different, and they presented proteins related to toxicity, such as serinepeptidases, serpins and lectins. P. orsilochus venom exhibited higher caseinolytic activity than M. lanata venom, agreeing with the fact that only P. orsilochus venom hydrolyzed human fibrin(ogen). In addition, the latter shortened the clotting time triggered by calcium. While the venom of M. lanata induced a mild inflammatory lesion in mouse skin, P. orsilochus venom caused prominent necrosis, inflammatory infiltration and hemorrhage at the site of venom injection. On the other hand, P. orsilochus venom was better recognized by Lonomia obliqua antivenom, although many of its proteins could not be cross-reacted, what may explain the difference in the clinical manifestations between accidents by Podalia and those by Lonomia. Altogether, this study provides relevant information about the pathophysiological mechanisms whereby both caterpillars can induce toxicity on human beings, and paves the way for novel discovery of naturally occurring bioactive compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA