RESUMO
Assembly in confinement is a problem of great interest in colloidal structure design, plasmonics, photonics, and industrial packaging. Along with the range of design choices provided by particle shape and attraction or repulsion, confined systems add an additional layer of complexity through the interactions between particles and the container holding them. The range of possible behaviors produced by these systems remains largely unexplored, yet has profound consequences on the resultant assembled structure. Here, we address this problem by exploring how the assembly of hard tetrahedral particles is affected by a spherical container. We simulate particle assemblies in containers holding 4 to 10 000 particles and analyze the range of resultant structures. We find that the presence of a curved wall causes organization into distinct concentric shells in containers holding up to thousands of particles. In addition, we see that wall curvature affects structural motifs in systems as large as 10 000 particles, promoting local environments that maximally conform to the wall and providing a seed for the propagation of these motifs into the interior of the container. Through this work, we show how confining interfaces can be used to promote the assembly of structures markedly distinct from those seen in the more commonly studied bulk systems.
RESUMO
Creating materials with structure that is independently controllable at a range of scales requires breaking naturally occurring hierarchies. Breaking these hierarchies can be achieved via the decoupling of building block attributes from structure during assembly. Here, we demonstrate, through computer simulations and experiments, that shape and interaction decoupling occur in colloidal cuboids suspended in evaporating emulsion droplets. The resulting colloidal clusters serve as "preassembled" mesoscale building blocks for larger-scale structures. We show that clusters of up to nine particles form mesoscale building blocks with geometries that are independent of the particles' degree of faceting and dipolar magnetic interactions. To highlight the potential of these superball clusters for hierarchical assembly, we demonstrate, using computer simulations, that clusters of six to nine particles can assemble into high-order structures that differ from bulk self-assembly of individual particles. Our results suggest that preassembled building blocks present a viable route to hierarchical materials design.
RESUMO
The nature of yield in amorphous materials under stress has yet to be fully elucidated. In particular, understanding how microscopic rearrangement gives rise to macroscopic structural and rheological signatures in disordered systems is vital for the prediction and characterization of yield and the study of how memory is stored in disordered materials. Here, we investigate the evolution of local structural homogeneity on an individual particle level in amorphous jammed two-dimensional (athermal) systems under oscillatory shear and relate this evolution to rearrangement, memory, and macroscale rheological measurements. We define the structural metric crystalline shielding, and show that it is predictive of rearrangement propensity and structural volatility of individual particles under shear. We use this metric to identify localized regions of the system in which the material's memory of its preparation is preserved. Our results contribute to a growing understanding of how local structure relates to dynamic response and memory in disordered systems.
RESUMO
Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only require minimal further reduction of phason strain. We also observe transformation from a denser approximant to the DQC via continuous phason strain relaxation. Our results demonstrate that soft-matter quasicrystals dominated by entropy can be thermodynamically stable and grown with high structural quality--just like their alloy quasicrystal counterparts.
RESUMO
We demonstrate that fragility, a technologically relevant characteristic of glass formation, depends on particle shape for glass-formers comprised of hard polyhedral particles. We find that hard polyhedron glass-formers become stronger (less fragile) as particle shape becomes increasingly tetrahedral. We correlate fragility with local structure, and show that stronger systems display a stronger preference for a pairwise face-to-face motif that frustrates global periodic ordering and gives rise in most systems studied to bond angle distributions that are peaked around the ideal tetrahedral bond angle. We demonstrate through mean-field-like simulations of explicit particle pairs and surrounding baths of "ghost" particles that the prevalence of this pairwise configuration can be explained via free volume exchange and emergent entropic force arguments. Our study provides a clear and direct link between the local geometry of fluid structure and the properties of glass formation, independent of interaction potential or other non-geometric tuning parameters. We ultimately demonstrate that the engineering of fragility in colloidal systems via slight changes to particle shape is possible.
RESUMO
Similarly to many scientific disciplines, neuroscience has increasingly attempted to confront pervasive gender imbalances. Although publishing and conference participation are often highlighted, recent research has called attention to the prevalence of gender imbalance in citations. Because of the downstream effects of citations on visibility and career advancement, understanding the role of gender in citation practices is vital for addressing scientific inequity. Here, we investigate whether gendered patterns are present in neuroscience citations. Using data from five top neuroscience journals, we find that reference lists tend to include more papers with men as first and last author than would be expected if gender were unrelated to referencing. Importantly, we show that this imbalance is driven largely by the citation practices of men and is increasing over time as the field diversifies. We assess and discuss possible mechanisms and consider how researchers might approach these issues in their own work.
Assuntos
Neurociências , Editoração , Sexismo , Feminino , Humanos , MasculinoRESUMO
The existence of topological order is frequently associated with strongly coupled quantum matter. Here, we demonstrate the existence of topological phases in classical systems of densely packed, hard, anisotropic polyhedrally shaped colloidal particles. We show that previously reported transitions in dense packings lead to the existence of topologically ordered thermodynamic phases, which we show are stable away from the dense packing limit. Our work expands the library of known topological phases, whose experimental realization could provide new means for constructing plasmonic materials that are robust in the presence of fluctuations.
RESUMO
Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid-fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.
RESUMO
We explore a rich phase space of crystals self-assembled from colloidal "polyhedral sphere clusters (PSCs)," each of which consists of equal-sized "halo" spheres placed at the vertices of a polyhedron such that they just touch along each edge. Such clusters, created experimentally by fusing spheres, can facilitate assembly of useful colloidal crystal symmetries not attainable by unclustered spheres. While not crucial for their self-assembly, the center of the PSC can contain a "core" particle that can be used as a scaffold to build the PSC. Using Brownian dynamics simulations, we show the self-assembly of eight distinct crystalline phases from PSCs that correspond to the five Platonic polyhedra, and that are made of spheres with purely repulsive interactions. Strong crystalline order is seen in the centers of mass of the PSCs, or equivalently the core particles. The halo particles also may organize into crystal structures, usually with weaker crystalline order than the core particles. Notably, however, in crystals assembled from the octahedral and icosahedral PSCs, the halo particles are also well ordered, nesting within the crystals formed by the cores. Interestingly, despite the rounded nature of the PSCs, in some cases we obtain structures similar to those of the corresponding faceted polyhedra interacting only via excluded volume. Only the tetrahedral PSCs fail to self-assemble into a crystal, but we demonstrate that a pre-assembled crystal - whose halo particles sit on a close-packed face-centered cubic lattice, and whose core particles form a diamond structure - is stable at high density and melts into a hexagonal phase at lower density.
RESUMO
A universally accepted explanation for why liquids sometimes vitrify rather than crystallize remains hotly pursued, despite the ubiquity of glass in our everyday lives, the utilization of the glass transition in innumerable modern technologies, and nearly a century of theoretical and experimental investigation. Among the most compelling hypothesized mechanisms underlying glass formation is the development in the fluid phase of local structures that somehow prevent crystallization. Here, we explore that mechanism in the case of hard particle glasses by examining the glass transition in an extended alchemical (here, shape) space; that is, a space where particle shape is treated as a thermodynamic variable. We investigate simple systems of hard polyhedra, with no interactions aside from volume exclusion, and show via Monte Carlo simulation that glass formation in these systems arises from a multiplicity of competing local motifs, each of which is prevalent in-and predictable from-nearby ordered structures in alchemical space.
RESUMO
Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.