Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 16(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661191

RESUMO

Overexpression of the HER2 protein in breast cancer patients is a predictor of poor prognosis and resistance to therapies. We used an inducible breast cancer transformation system that allows investigation of early molecular changes. HER2 overexpression to similar levels as those observed in a subtype of HER2-positive breast cancer patients induced transformation of MCF10A cells and resulted in gross morphological changes, increased anchorage-independent growth of cells, and altered the transcriptional programme of genes associated with oncogenic transformation. Global phosphoproteomic analysis during HER2 induction predominantly detected an increase in protein phosphorylation. Intriguingly, this correlated with chromatin opening, as measured by ATAC-seq on acini isolated from 3D cell culture. HER2 overexpression resulted in opening of many distal regulatory regions and promoted reprogramming-associated heterogeneity. We found that a subset of cells acquired a dedifferentiated breast stem-like phenotype, making them likely candidates for malignant transformation. Our data show that this population of cells, which counterintuitively enriches for relatively low HER2 protein abundance and increased chromatin accessibility, possesses transformational drive, resulting in increased anchorage-independent growth in vitro compared to cells not displaying a stem-like phenotype.


Assuntos
Cromatina , Receptor ErbB-2 , Humanos , Receptor ErbB-2/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Epitélio/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
Nat Commun ; 11(1): 3671, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699299

RESUMO

Epigenetic reprogramming is a cancer hallmark, but how it unfolds during early neoplastic events and its role in carcinogenesis and cancer progression is not fully understood. Here we show that resetting from primed to naïve human pluripotency results in acquisition of a DNA methylation landscape mirroring the cancer DNA methylome, with gradual hypermethylation of bivalent developmental genes. We identify a dichotomy between bivalent genes that do and do not become hypermethylated, which is also mirrored in cancer. We find that loss of H3K4me3 at bivalent regions is associated with gain of methylation. Additionally, we observe that promoter CpG island hypermethylation is not restricted solely to emerging naïve cells, suggesting that it is a feature of a heterogeneous intermediate population during resetting. These results indicate that transition to naïve pluripotency and oncogenic transformation share common epigenetic trajectories, which implicates reprogramming and the pluripotency network as a central hub in cancer formation.


Assuntos
Transformação Celular Neoplásica/genética , Reprogramação Celular , Metilação de DNA , Epigênese Genética , Neoplasias/genética , Animais , Linhagem Celular , Técnicas de Cocultura , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Histonas/genética , Histonas/metabolismo , Células-Tronco Embrionárias Humanas , Humanos , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA