Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 118: 35-49, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34034988

RESUMO

A hierarchical development of cortical areas was suggested over a century ago, but the diversity and complexity of cortical hierarchy properties have so far prevented a formal demonstration. The aim of this review is to clarify the similarities and differences in the developmental processes underlying cortical development of primary and higher-order areas. We start by recapitulating the historical and recent advances underlying the biological principle of cortical hierarchy in adults. We then revisit the arguments for a hierarchical maturation of cortical areas, and further integrate the principles of cortical areas specification during embryonic and postnatal development. We highlight how the dramatic expansion in cortical size might have contributed to the increased number of association areas sustaining cognitive complexification in evolution. Finally, we summarize the recent observations of an alteration of cortical hierarchy in neuropsychiatric disorders and discuss their potential developmental origins.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Animais , Humanos , Análise Espaço-Temporal
3.
Mol Psychiatry ; 25(6): 1159-1174, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31439936

RESUMO

Exposure to stress during early life (infancy/childhood) has long-term effects on the structure and function of the prefrontal cortex (PFC), and increases the risk for adult depression and anxiety disorders. However, little is known about the molecular and cellular mechanisms of these effects. Here, we focused on changes induced by chronic maternal separation during the first 2 weeks of postnatal life. Unbiased mRNA expression profiling in the medial PFC (mPFC) of maternally separated (MS) pups identified an increased expression of myelin-related genes and a decreased expression of immediate early genes. Oligodendrocyte lineage markers and birthdating experiments indicated a precocious oligodendrocyte differentiation in the mPFC at P15, leading to a depletion of the oligodendrocyte progenitor pool in MS adults. We tested the role of neuronal activity in oligodendrogenesis, using designed receptors exclusively activated by designed drugs (DREADDs) techniques. hM4Di or hM3Dq constructs were transfected into mPFC neurons using fast-acting AAV8 viruses. Reduction of mPFC neuron excitability during the first 2 postnatal weeks caused a premature differentiation of oligodendrocytes similar to the MS pups, while chemogenetic activation normalised it in the MS animals. Bidirectional manipulation of neuron excitability in the mPFC during the P2-P14 period had long lasting effects on adult emotional behaviours and on temporal object recognition: hM4Di mimicked MS effects, while hM3Dq prevented the pro-depressive effects and short-term memory impairment of MS. Thus, our results identify neuronal activity as a critical target of early-life stress and demonstrate its function in controlling both postnatal oligodendrogenesis and adult mPFC-related behaviours.


Assuntos
Privação Materna , Oligodendroglia/patologia , Estresse Psicológico , Animais , Comportamento Animal , Proliferação de Células , Emoções , Feminino , Masculino , Camundongos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Gravidez
4.
Front Cell Neurosci ; 11: 139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588453

RESUMO

Changing serotonin (5-hydroxytryptamine, 5-HT) brain levels during critical periods in development has long-lasting effects on brain function, particularly on later anxiety/depression-related behaviors in adulthood. A large part of the known developmental effects of 5-HT occur during critical periods of postnatal life, when activity-dependent mechanisms remodel neural circuits. This was first demonstrated for the maturation of sensory brain maps in the barrel cortex and the visual system. More recently this has been extended to the 5-HT raphe circuits themselves and to limbic circuits. Recent studies overviewed here used new genetic models in mice and rats and combined physiological and structural approaches to provide new insights on the cellular and molecular mechanisms controlled by 5-HT during late stages of neural circuit maturation in the raphe projections, the somatosensory cortex and the visual system. Similar mechanisms appear to be also involved in the maturation of limbic circuits such as prefrontal circuits. The latter are of particular relevance to understand the impact of transient 5-HT dysfunction during postnatal life on psychiatric illnesses and emotional disorders in adult life.

5.
J Chem Neuroanat ; 75(Pt A): 2-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26748312

RESUMO

The progeny of Dbx1-expressing progenitors was studied in the developing mouse pallium, using two transgenic mouse lines: (1) Dbx1(nlslacZ) mice, in which the gene of the ß-galactosidase reporter (LacZ) is inserted directly under the control of the Dbx1 promoter, allowing short-term lineage tracing of Dbx1-derived cells; and (2) Dbx1(CRE) mice crossed with a Cre-dependent reporter strain (ROSA26(loxP-stop-loxP-LacZ)), in which the Dbx1-derived cells result permanently labeled (Bielle et al., 2005). We thus examined in detail the derivatives of the postulated longitudinal ventral pallium (VPall) sector, which has been defined among other features by its selective ventricular zone expression of Dbx1 (the recent ascription by Puelles, 2014 of the whole olfactory cortex primordium to the VPall was tested). Earlier notions about a gradiental caudorostral reduction of Dbx1 signal were corroborated, so that virtually no signal was found at the olfactory bulb and the anterior olfactory area. The piriform cortex was increasingly labeled caudalwards. The only endopiriform grisea labeled were the ventral endopiriform nucleus and the bed nucleus of the external capsule. Anterior and basolateral parts of the whole pallial amygdala also were densely marked, in contrast to the negative posterior parts of these pallial amygdalar nuclei (leaving apart medial amygdalar parts ascribed to subpallial or extratelencephalic sources of Dbx1-derived GABAergic and non-GABAergic neurons). Alternative tentative interpretations are discussed to explain the partial labeling obtained of both olfactory and amygdaloid structures. This includes the hypothesis of an as yet undefined part of the pallium, potentially responsible for the posterior amygdala, or the hypothesis that the VPall may not be wholly characterized by Dbx1 expression (this gene not being necessary for VPall molecular distinctness and histogenetic potency), which would leave a dorsal Dbx1-negative VPall subdomain of variable size that might contribute partially to olfactory and posterior amygdalar structures.


Assuntos
Prosencéfalo Basal/anatomia & histologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Biomarcadores/análise , Proteínas de Homeodomínio/análise , Óperon Lac , Camundongos , Camundongos Transgênicos
6.
Cell Rep ; 13(9): 1965-76, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655908

RESUMO

Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.


Assuntos
Comportamento Animal , Neurônios Serotoninérgicos/metabolismo , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Linhagem Celular , Clozapina/análogos & derivados , Clozapina/farmacologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Serotonina/metabolismo , Natação
7.
J Neurosci ; 34(37): 12379-93, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25209278

RESUMO

Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.


Assuntos
Envelhecimento/metabolismo , Ansiedade/metabolismo , Depressão/metabolismo , Extinção Psicológica , Medo , Córtex Pré-Frontal/fisiopatologia , Serotonina/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade/complicações , Comportamento Animal , Depressão/complicações , Feminino , Masculino , Camundongos
8.
PLoS One ; 6(12): e28497, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174821

RESUMO

Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered "junk DNA". However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2(+) neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2(+) neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1(-)/NPY(+)) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure.


Assuntos
Sequência Conservada/genética , Corpo Caloso/citologia , Elementos Facilitadores Genéticos/genética , Mamíferos/genética , Proteínas de Ligação à Região de Interação com a Matriz/genética , Neurônios/metabolismo , Elementos Nucleotídeos Curtos e Dispersos/genética , Fatores de Transcrição/genética , Animais , Animais Recém-Nascidos , Sequência de Bases , Sítios de Ligação , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Neurônios/citologia , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia/genética , Fatores de Transcrição/metabolismo , beta-Galactosidase/metabolismo
9.
J Neurosci ; 31(46): 16570-80, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22090484

RESUMO

GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical interneuron diversity is thought to emerge from the genetic specification of different groups of progenitor cells within the subpallium. Most cortical interneurons originate from two main regions, the medial and the caudal ganglionic eminences (MGE and CGE, respectively). In addition, it has been shown that progenitors in the embryonic preoptic area (POA) also produce a small population of cortical GABAergic interneurons. Here, we show that the contribution of the POA to the complement of cortical GABAergic interneurons is larger than previously believed. Using genetic fate mapping and in utero transplantation experiments, we demonstrate that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneurons. There are, however, some features that seem to distinguish POA-derived interneurons from MGE- or CGE-derived cells, such as their preferential laminar location. These results indicate that the mechanisms controlling the specification of different classes of cortical interneurons might be more complex than previously expected. Together with earlier findings, our results also suggest that the POA generates nearly 10% of the GABAergic interneurons in the cerebral cortex of the mouse.


Assuntos
Interneurônios/fisiologia , Células-Tronco Neurais/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/embriologia , Córtex Somatossensorial/citologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Bromodesoxiuridina/metabolismo , Movimento Celular/genética , Estimulação Elétrica , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Técnicas In Vitro , Indóis/metabolismo , Proteínas Luminescentes/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Técnicas de Patch-Clamp , Área Pré-Óptica/metabolismo , Proteínas/genética , RNA não Traduzido , Córtex Somatossensorial/crescimento & desenvolvimento
10.
PLoS One ; 6(4): e19367, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552538

RESUMO

Development of the vertebrate forebrain and craniofacial structures are intimately linked processes, the coordinated growth of these tissues being required to ensure normal head formation. In this study, we identify five small subsets of progenitors expressing the transcription factor dbx1 in the cephalic region of developing mouse embryos at E8.5. Using genetic tracing we show that dbx1-expressing cells and their progeny have a modest contribution to the forebrain and face tissues. However, their genetic ablation triggers extensive and non cell-autonomous apoptosis as well as a decrease in proliferation in surrounding tissues, resulting in the progressive loss of most of the forebrain and frontonasal structures. Targeted ablation of the different subsets reveals that the very first dbx1-expressing progenitors are critically required for the survival of anterior neural tissues, the production and/or migration of cephalic neural crest cells and, ultimately, forebrain formation. In addition, we find that the other subsets, generated at slightly later stages, each play a specific function during head development and that their coordinated activity is required for accurate craniofacial morphogenesis. Our results demonstrate that dbx1-expressing cells have a unique function during head development, notably by controlling cell survival in a non cell-autonomous manner.


Assuntos
Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Prosencéfalo/citologia , Prosencéfalo/embriologia , Crânio/embriologia , Animais , Apoptose/genética , Proliferação de Células , Sobrevivência Celular/genética , Camundongos , Crista Neural/citologia , Crista Neural/metabolismo , Prosencéfalo/metabolismo , Crânio/citologia , Crânio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
11.
J Neurosci ; 30(31): 10563-74, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20685999

RESUMO

The generation of a precise number of neural cells and the determination of their laminar fate are tightly controlled processes during development of the cerebral cortex. Using genetic tracing in mice, we have identified a population of glutamatergic neurons generated by Dbx1-expressing progenitors at the pallial-subpallial boundary predominantly at embryonic day 12.5 (E12.5) and subsequent to Cajal-Retzius cells. We show that these neurons migrate tangentially to populate the cortical plate (CP) at all rostrocaudal and mediolateral levels by E14.5. At birth, they homogeneously populate cortical areas and represent <5% of cortical cells. However, they are distributed into neocortical layers according to their birthdates and express the corresponding markers of glutamatergic differentiation (Tbr1, ER81, Cux2, Ctip2). Notably, this population dies massively by apoptosis at the completion of corticogenesis and represents 50% of dying neurons in the postnatal day 0 cortex. Specific genetic ablation of these transient Dbx1-derived CP neurons leads to a 20% decrease in neocortical cell numbers in perinatal animals. Our results show that a previously unidentified transient population of glutamatergic neurons migrates from extraneocortical regions over long distance from their generation site and participates in neocortical radial growth in a non-cell-autonomous manner.


Assuntos
Movimento Celular/fisiologia , Ácido Glutâmico/metabolismo , Neocórtex/metabolismo , Neurônios/metabolismo , Animais , Apoptose/fisiologia , Contagem de Células , Imuno-Histoquímica , Camundongos , Neocórtex/embriologia , Neurogênese/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Appl Opt ; 49(7): 1097-103, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20197807

RESUMO

The optical limiting behavior of multiwalled carbon nanotube (MWCNT) powder in chloroform solution under CO(2) infrared laser irradiations is reported for, to our knowledge, the first time. Here we demonstrate the pure thermal origin of the optical limiting effect in the 160 ns time scale studied. The Z-scan technique appears to be an excellent tool for experimental evaluation of the nonlinear refractive index. An experimental model for the optical limiting behavior of MWCNT suspensions in chloroform is presented. The occurrence of a laser-induced thermal lens through the absorption of energy by the MWCNTs and subsequent heat transfer to the solvent, followed by solvent vapor bubble growth, is the main factor governing the observed drop in transmittance. Pump-probe experiments have been performed to obtain some quantitative estimation of both the rise and decay times of the thermal lensing phenomenon. It was found that the early probe signal decay, tau(1)=149 ns, was of the same order of magnitude as the rise time of the thermal lens, tau(r)=121 ns. When the nonlinear scattering was considered, a total decay time of tau=1.8 micros was obtained. A recovery time for the thermal lens of several tens of milliseconds has been experimentally determined, which is in good accordance with the theoretical value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA