Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498278

RESUMO

Biofilm formation on biomaterials is a challenge in the health area. Antimicrobial substances based on nanomaterials have been proposed to solve this problem. The aim was to incorporate nanostructured silver vanadate decorated with silver nanoparticles (ß-AgVO3) into dental porcelains (IPS Inline and Ex-3 Noritake), at concentrations of 2.5% and 5%, and evaluate the surface characteristics (by SEM/EDS), antimicrobial activity (against Streptococcus mutans, Streptococcus sobrinus, Aggregatibacter actinomycetemcomitans, and Pseudomonas aeruginosa), silver (Ag+) and vanadium (V4+/V5+) ions release, and mechanical properties (microhardness, roughness, and fracture toughness). The ß-AgVO3 incorporation did not alter the porcelain's components, reduced the S. mutans, S. sobrinus and A. actinomycetemcomitans viability, increased the fracture toughness of IPS Inline, the roughness for all groups, and did not affect the microhardness of the 5% group. Among all groups, IPS Inline 5% released more Ag+, and Ex-3 Noritake 2.5% released more V4+/V5+. It was concluded that the incorporation of ß-AgVO3 into dental porcelains promoted antimicrobial activity against S. mutans, S. sobrinus, and A. actinomycetemcomitans (preventing biofilm formation), caused a higher release of vanadium than silver ions, and an adequate mechanical behavior was observed. However, the incorporation of ß-AgVO3 did not reduce P. aeruginosa viability and increased the surface roughness of dental porcelains.

2.
J Biomed Mater Res B Appl Biomater ; 109(9): 1380-1388, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33470054

RESUMO

The cytotoxic and genotoxic effects of commercial endodontic sealers (AH Plus, Sealer 26 and Endomethasone N) incorporated with nanostructured silver vanadate decorated with silver nanoparticles (AgVO3 - at concentrations 2.5, 5, and 10%) on human gingival fibroblast (HGF), and the silver (Ag+ ) and vanadium (V4+ /V5+ ) ions release were evaluated. Cytotoxicity, cell death, and genotoxicity tests were carried out with extract samples of 24-hr and 7-days. The release of Ag+ and V4+ /V5+ was evaluated. Cytotoxicity in HGF was caused by AH Plus (AP) with 5 and 10% of AgVO3 (83.84 and 67.49% cell viability, respectively) with 24-hr extract (p < 0.05), as well as all concentrations of AP with 7-days extract (p < 0.05 -AP 0% = 73.17%; AP 2.5% = 75.07%; AP 5% = 70.62%; AP 10% = 68.46% cell viability). The commercial sealers Sealer 26 (S26) and Endomethasone N (EN) were cytotoxic (p < 0.05 - S26 0% = 34.81%; EN 0% = 20.99% cell viability with 7-days extract). AP 10% with 7-days extract induced 32% apoptotic cells in HGF (p < 0.05). Genotoxic effect was not observed. The AP groups released more Ag+ , while S26 and EN released more V4+ /V5+ in 24 hr. The Ag+ can be cytotoxic. In conclusion, the cytotoxicity caused to HGF can be attributed by the commercial sealers and enhanced by incorporation of AgVO3 , was not observed genotoxic effect, and apoptosis was induced only by AH Plus 10% 7-days extract. Ag+ can influence cell viability.


Assuntos
Antibacterianos/química , Bismuto/química , Hidróxido de Cálcio/química , Fibroblastos/citologia , Gengiva/citologia , Materiais Restauradores do Canal Radicular/química , Prata/química , Vanádio/química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dexametasona/química , Combinação de Medicamentos , Liberação Controlada de Fármacos , Resinas Epóxi/química , Formaldeído/química , Humanos , Hidrocortisona/química , Íons/química , Prata/farmacologia , Relação Estrutura-Atividade , Timol/análogos & derivados , Timol/química , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA