Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755281

RESUMO

Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.

2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769186

RESUMO

Protein palmitoylation is a reversible post-translational modification by fatty acids (FA), mainly a palmitate (C16:0). Palmitoylation allows protein shuttling between the plasma membrane and cytosol to regulate protein stability, sorting and signaling activity and its deficiency leads to diseases. We aimed to characterize the palmitoyl-proteome of ovarian follicular cells and molecular machinery regulating protein palmitoylation within the follicle. For the first time, 84 palmitoylated proteins were identified from bovine granulosa cells (GC), cumulus cells (CC) and oocytes by acyl-biotin exchange proteomics. Of these, 32 were transmembrane proteins and 27 proteins were detected in bovine follicular fluid extracellular vesicles (ffEVs). Expression of palmitoylation and depalmitoylation enzymes as palmitoyltransferases (ZDHHCs), acylthioesterases (LYPLA1 and LYPLA2) and palmitoylthioesterases (PPT1 and PPT2) were analysed using transcriptome and proteome data in oocytes, CC and GC. By immunofluorescence, ZDHHC16, PPT1, PPT2 and LYPLA2 proteins were localized in GC, CC and oocyte. In oocyte and CC, abundance of palmitoylation-related enzymes significantly varied during oocyte maturation. These variations and the involvement of identified palmitoyl-proteins in oxidation-reduction processes, energy metabolism, protein localization, vesicle-mediated transport, response to stress, G-protein mediated and other signaling pathways suggests that protein palmitoylation may play important roles in oocyte maturation and ffEV-mediated communications within the follicle.


Assuntos
Bovinos/metabolismo , Folículo Ovariano/metabolismo , Proteínas/metabolismo , Animais , Células Cultivadas , Células do Cúmulo/química , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/química , Células da Granulosa/metabolismo , Lipoilação , Oócitos/química , Oócitos/metabolismo , Folículo Ovariano/química , Proteínas/análise , Proteômica
3.
Reprod Biol ; 21(4): 100545, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34419706

RESUMO

In order to identify oviduct fluid (OF) peptides and proteins possibly uptaken by developing embryos, in-vitro produced bovine embryos exposed or not to OF were individually analyzed by MALDI-TOF mass spectrometry. Overall, 11 masses were overabundant in OF-treated embryos compared to controls, among which one at 8.9 kDa annotated as immediate early response 3-interacting protein 1 or a peptide of transitional endoplasmic reticulum ATPase met the criteria of an OF embryo-interacting protein or peptide.


Assuntos
Embrião de Mamíferos/metabolismo , Fertilização in vitro , Oviductos/metabolismo , Proteínas/metabolismo , Proteoma , Animais , Bovinos , Feminino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066832

RESUMO

Implantable cardiac defibrillators (ICDs) are recommended to prevent the risk of sudden cardiac death. However, shocks are associated with an increased mortality with a dose response effect, and a strategy of reducing electrical therapy burden improves the prognosis of implanted patients. We review the mechanisms of defibrillation and its consequences, including cell damage, metabolic remodeling, calcium metabolism anomalies, and inflammatory and pro-fibrotic remodeling. Electrical shocks do save lives, but also promote myocardial stunning, heart failure, and pro-arrhythmic effects as seen in electrical storms. Limiting unnecessary implantations and therapies and proposing new methods of defibrillation in the future are recommended.


Assuntos
Desfibriladores Implantáveis , Eletrochoque , Miocárdio/patologia , Animais , Humanos , Inflamação/patologia , Estresse Oxidativo , Proteômica
5.
Front Cell Dev Biol ; 9: 655866, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898456

RESUMO

The molecular basis of male fertility remains unclear, especially in chickens, where decades of genetic selection increased male fertility variability as a side effect. As transcription and translation are highly limited in sperm, proteins are key molecules defining their functionality, making proteomic approaches one of the most adequate methods to investigate sperm capacity. In this context, it is interesting to combine complementary proteomic approaches to maximize the identification of proteins related to sperm-fertilizing ability. In the present study, we aimed at identifying proteins related to fertility in meat-type roosters, showing fertility variability. Fertile roosters (fertility rates higher than 70% after artificial insemination) differed from subfertile roosters (fertility rates lower than 40%) in their sperm mass motility. Fertile and subfertile sperm protein contents were compared using two complementary label-free quantitative proteomic methods: Intact Cell MALDI-TOF-Mass Spectrometry and GeLC-MS/MS. Combining the two strategies, 57 proteins were identified as differentially abundant. Most of them were described for the first time as differentially abundant according to fertility in this species. These proteins were involved in various molecular pathways including flagellum integrity and movement, mitochondrial functions, sperm maturation, and storage in female tract as well as oocyte-sperm interaction. Collectively, our data improved our understanding of chicken sperm biology by revealing new actors involved in the complexity of male fertility that depends on multiple cell functions to reach optimal rates. This explains the inability of reductionist in vitro fertility testing in predicting male fertility and suggests that the use of a combination of markers is a promising approach.

6.
Reprod Fertil Dev ; 34(2): 1-26, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231385

RESUMO

Finely regulated fatty acid (FA) metabolism within ovarian follicles is crucial to follicular development and influences the quality of the enclosed oocyte, which relies on the surrounding intra-follicular environment for its growth and maturation. A growing number of studies have examined the association between the lipid composition of follicular compartments and oocyte quality. In this review, we focus on lipids, their possible exchanges between compartments within the ovarian follicle and their involvement in different pathways during oocyte final growth and maturation. Lipidomics provides a detailed snapshot of the global lipid profiles and identified lipids, clearly discriminating the cells or fluid from follicles at distinct physiological stages. Follicular fluid appears as a main mediator of lipid exchanges between follicular somatic cells and the oocyte, through vesicle-mediated and non-vesicular transport of esterified and free FA. A variety of expression data allowed the identification of common and cell-type-specific actors of lipid metabolism in theca cells, granulosa cells, cumulus cells and oocytes, including key regulators of FA uptake, FA transport, lipid transformation, lipoprotein synthesis and protein palmitoylation. They act in harmony to accompany follicular development, and maintain intra-follicular homeostasis to allow the oocyte to accumulate energy and membrane lipids for subsequent meiotic divisions and first embryo cleavages.


Assuntos
Oócitos , Folículo Ovariano , Animais , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/fisiologia , Lipídeos , Oócitos/metabolismo , Folículo Ovariano/metabolismo
7.
Front Vet Sci ; 7: 584948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330709

RESUMO

Follicular fluid (FF) fills the interior portion of the ovarian antral follicle and provides a suitable microenvironment for the growth of the enclosed oocyte through molecular factors that originate from plasma and the secretions of follicular cells. FF contains extracellular nanovesicles (ffEVs), including 30-100-nm membrane-coated exosomes, which carry different types of RNA, proteins, and lipids and directly influence oocyte competence to develop embryo. In the present study, we aimed to characterize the protein cargo of EVs from the FF of 3-6-mm follicles and uncover the origins of ffEVs by assessing expression levels of corresponding mRNAs in bovine follicular cells and oocyte and cell proteomes. Isolated exosome-like ffEVs were 53.6 + 23.3 nm in size and could be internalized by cumulus-oocyte complex. Proteomes of ffEVs and granulosa cells (GC) were assessed using nanoflow liquid chromatography coupled with high-resolution tandem mass spectrometry after the gel fractionation of total proteins. In total, 460 protein isoforms corresponding to 322 unique proteins were identified in ffEVs; among them, 190 were also identified via GC. Gene Ontology terms related to the ribosome, protein and RNA folding, molecular transport, endocytosis, signal transduction, complement and coagulation cascades, apoptosis, and developmental biology pathways, including PI3K-Akt signaling, were significantly enriched features of ffEV proteins. FfEVs contain numerous ribosome and RNA-binding proteins, which may serve to compact different RNAs to regulate gene expression and RNA degradation, and might transfer ribosomal constituents to the oocyte. Majority of genes encoding ffEV proteins expressed at different levels in follicular cells and oocyte, corroborating with numerous proteins, which were reported in bovine oocyte and cumulus cells in other studies thus indicating possible origin of ffEV proteins. The limited abundance of several mRNAs within follicular cells indicated that corresponding ffEV proteins likely originated from circulating exosomes released by other tissues. Analysis of bovine ffEV transcriptome revealed that mRNAs present in ffEV accounted for only 18.3% of detected ffEV proteins. In conclusion, our study revealed numerous proteins within ffEVs, which originated from follicular and other cells. These proteins are likely involved in the maintenance of follicular homeostasis and may affect oocyte competence.

8.
Sci Rep ; 10(1): 20252, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219330

RESUMO

Implantable cardioverter-defibrillators (ICD) are meant to fight life-threatening ventricular arrhythmias and reduce overall mortality. Ironically, life-saving shocks themselves have been shown to be independently associated with an increased mortality. We sought to identify myocardial changes at the protein level immediately after ICD electrical shocks using a proteomic approach. ICD were surgically implanted in 10 individuals of a healthy male sheep model: a control group (N = 5) without any shock delivery and a shock group (N = 5) with the delivery of 5 consecutive shocks at 41 J. Myocardial tissue samples were collected at the right-ventricle apex near to the lead coil and at the right ventricle basal free wall region. Global quantitative proteomics experiments on myocardial tissue samples were performed using mass spectrometry techniques. Proteome was significantly modified after electrical shock and several mechanisms were associated: protein, DNA and membrane damages due to extreme physical conditions induced by ICD-shock but also due to regulated cell death; metabolic remodeling; oxidative stress; calcium dysregulation; inflammation and fibrosis. These proteome modifications were seen in myocardium both "near" and "far" from electrical shock region. N-term acetylated troponin C was an interesting tissular biomarker, significantly decreased after electrical shock in the "far" region (AUC: 0.93). Our data support an acute shock-induced myocardial tissue injury which might be involved in acute paradoxical deleterious effects such as heart failure and ventricular arrhythmias.


Assuntos
Cardioversão Elétrica , Miocárdio/patologia , Proteômica , Animais , Masculino , Modelos Animais , Miocárdio/metabolismo , Ovinos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Int J Mol Sci ; 21(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932995

RESUMO

Lipid metabolism in ovarian follicular cells supports the preparation of an enclosed oocyte to ovulation. We aimed to compare lipid composition of a dominant large follicle (LF) and subordinated small follicles (SFs) within the same ovaries. Mass spectrometry imaging displayed the differences in the distribution of several lipid features between the different follicles. Comparison of lipid fingerprints between LF and SF by Matrix Assisted Laser Desorption/Ionisation Time-Of-Flight (MALDI-TOF) mass spectrometry revealed that in the oocytes, only 8 out of 468 detected lipids (1.7%) significantly changed their abundance (p < 0.05, fold change > 2). In contrast, follicular fluid (FF), granulosa, theca and cumulus cells demonstrated 55.5%, 14.9%, 5.3% and 9.8% of significantly varied features between LF and SF, respectively. In total, 25.2% of differential lipids were identified and indicated potential changes in membrane and signaling lipids. Tremendous changes in FF lipid composition were likely due to the stage specific secretions from somatic follicular cells that was in line with the differences observed from FF extracellular vesicles and gene expression of candidate genes in granulosa and theca cells between LF and SF. In addition, lipid storage in granulosa and theca cells varied in relation to follicular size and atresia. Differences in follicular cells lipid profiles between LF and SF may probably reflect follicle atresia degree and/or accumulation of appropriate lipids for post-ovulation processes as formation of corpus luteum. In contrast, the enclosed oocyte seems to be protected during final follicular growth, likely due in part to significant lipid transformations in surrounding cumulus cells. Therefore, the enclosed oocyte could likely keep lipid building blocks and energy resources to support further maturation and early embryo development.


Assuntos
Líquido Folicular/metabolismo , Lipídeos/fisiologia , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Bovinos , Células do Cúmulo/metabolismo , Feminino , Células da Granulosa/metabolismo , Ovulação/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Células Tecais/metabolismo
10.
Sci Rep ; 10(1): 10654, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32606357

RESUMO

The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (ß-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca ß-NGF (aß-NGF) and its 3D structure and compared it with human recombinant ß-NGF (hß-NGF). We showed that the ß-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that ß-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Lúteo/efeitos dos fármacos , Corpo Lúteo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/metabolismo , Indução da Ovulação/métodos , Proteínas Recombinantes/metabolismo , Reprodução/efeitos dos fármacos , Sêmen/efeitos dos fármacos
11.
J Cyst Fibros ; 19(5): 830-836, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32165155

RESUMO

BACKGROUND: The hallmark of the cystic fibrosis (CF) lung disease is a neutrophil dominated lung environment that is associated to chronic lung tissue destruction and ultimately the patient's death. It is unclear whether the exacerbated neutrophil response is primary related to a defective CFTR or rather secondary to chronic bacterial colonization and inflammation. Here, we hypothesized that CF peripheral blood neutrophils present intrinsic alteration at birth before the start of an inflammatory process. METHODS: Peripheral blood neutrophils were isolated from newborn CFTR+/+ and CFTR-/- piglets. Neutrophils immunophenotype was evaluated by flow cytometry. Lipidomic and proteomic profile were characterized by liquid chromatography/tandem mass spectrometry (LC-MS/MS), intact cell matrix-assisted laser desorption/ionization mass spectrometry (ICM-MS) followed by top-down high-resolution mass spectrometry (HRMS), respectively. The ability of CF neutrophils to kill pseudomonas aeruginosa was also evaluated. RESULTS: Polyunsaturated fatty acid metabolites analysis did not show any difference between CFTR+/+ and CFTR-/- neutrophils. On the other hand, a predictive mathematical model based on the ICM-MS proteomic profile was able to discriminate between both genotypes. Top-down proteomic analysis identified 19 m/z differentially abundant masses that corresponded mainly to proteins related to the antimicrobial response and the generation of reactive oxygen species (ROS). However, no alteration in the ability of CFTR-/- neutrophils to kill pseudomonas aeruginosa in vitro was observed. CONCLUSIONS: ICM-MS demonstrated that CFTR-/- neutrophils present intrinsic alterations already at birth, before the presence of any infection or inflammation.


Assuntos
Fibrose Cística/sangue , Fibrose Cística/patologia , Neutrófilos/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Modelos Teóricos , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Suínos
12.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940782

RESUMO

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4-5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4-6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


Assuntos
Blastômeros/metabolismo , Mórula/metabolismo , Oviductos/metabolismo , Proteoma/metabolismo , Animais , Anexinas/genética , Anexinas/metabolismo , Bovinos , Feminino , Proteoma/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Membrana Vitelina/metabolismo
13.
Theriogenology ; 135: 65-72, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203089

RESUMO

Sperm capacitation, fertilization and embryo development take place in the oviduct during the periovulatory period of the estrous cycle. Phospholipids are crucial metabolites for sperm capacitation and early embryo development. The aim of this study was to monitor the abundance of phospholipids in the bovine oviductal fluid (OF) according to the stage of the estrous cycle and the side relative to ovulation. Pairs of bovine oviducts were collected in a slaughterhouse and classified into four stages of the estrous cycle: post-ovulatory (Post-ov), mid-luteal (Mid-lut), late-luteal (Late-lut) and pre-ovulatory (Pre-ov) phases (n = 17 cows/stage). Cell-free OF from oviducts ipsilateral and contralateral to the site of ovulation were analyzed using MALDI-TOF mass spectrometry. Lipid identification was achieved by high resolution mass spectrometry. A total of 274 lipid masses were detected in the mass range of 400-1000 Da, corresponding mostly to phosphatidylcholines (PC), lysoPC, phosphatidylethanolamine (PE), lysoPE and sphingomyelins (SM). Ipsilateral and contralateral OF did not differ in their lipid profiles at any stage of the cycle. However, 127 and 96 masses were differentially abundant between stages in ipsilateral and contralateral OF, respectively. Highest differences in lipid profiles were observed in the Pre-ov vs. Mid-lut and Pre-ov vs. Late-lut comparisons in both sides relative to ovulation. Differential abundance of specific molecules of PC, PE, SM and l-carnitine were observed at Pre-ov and Post-ov compared with the luteal phase. This work proposes new candidates potentially able to regulate sperm capacitation and early embryo development.


Assuntos
Bovinos/fisiologia , Ciclo Estral/fisiologia , Tubas Uterinas/metabolismo , Fosfolipídeos/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Lipídeos/biossíntese , Fosfolipídeos/classificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Eur J Med Chem ; 168: 373-384, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30826512

RESUMO

In this work, we aimed to understand the biological activity and the mechanism of action of three polymer-'ruthenium-cyclopentadienyl' conjugates (RuPMC) and a low molecular weight parental compound (Ru1) in cancer cells. Several biological assays were performed in ovarian (A2780) and breast (MCF7, MDA-MB-231) human cancer derived cell lines as well as in A2780cis, a cisplatin resistant cancer cell line. Our results show that all compounds have high activity towards cancer cells with low IC50 values in the micromolar range. We observed that all Ru-PMC compounds are mainly found inside the cells, in contrast with the parental low molecular weight compound Ru1 that was mainly found at the membrane. All compounds induced mitochondrial alterations. PMC3 and Ru1 caused F-actin cytoskeleton morphology changes and reduced the clonogenic ability of the cells. The conjugate PMC3 induced apoptosis at low concentrations comparing to cisplatin and could overcame the platinum resistance of A2780cis cancer cells. A proteomic analysis showed that these compounds induce alterations in several cellular proteins which are related to the phenotypic disorders induced by them. Our results suggest that PMC3 is foreseen as a lead candidate to future studies and acting through a different mechanism of action than cisplatin. Here we established the potential of these Ru compounds as new metallodrugs for cancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ciclopentanos/química , Polímeros/farmacologia , Rutênio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Polímeros/síntese química , Polímeros/química , Relação Estrutura-Atividade
15.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30347829

RESUMO

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.


Assuntos
Metabolismo dos Lipídeos , Folículo Ovariano/metabolismo , Transcriptoma , Animais , Bovinos , Feminino
16.
Cryobiology ; 82: 78-87, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29653077

RESUMO

Cryopreservation causes sub-lethal damage which limits the fertility of frozen thawed spermatozoa. Seminal plasma has been investigated as a cryoprotectant, but has yielded inconsistent results due to considerable variation in its constituents. Individual seminal plasma proteins offer an ideal alternative to whole seminal plasma, and several have been correlated with freezing success. Binder of Sperm Proteins (BSPs) are abundant ram seminal plasma proteins which have been suggested to have significant protective effects on ram spermatozoa during cold shock. This is in direct opposition to bull spermatozoa, where BSPs cause sperm deterioration during in vitro handling. We investigated the potential of BSP1 and BSP5 to prevent freezing associated damage to important functional parameters of ram spermatozoa. BSPs purified by size exclusion chromatography improved post thaw motility and penetration through artificial mucus. Highly purified BSP1 and BSP5, isolated by gelatin affinity and RP-HPLC, improved motility and membrane integrity, and reduced post thaw protein tyrosine phosphorylation. Exposure to BSP5 before freezing increased the amount of phosphatidylethanolamine on the sperm surface after thawing. Neither BSP1 nor BSP5 prevented freezing associated changes in membrane lipid disorder. These results suggest that BSPs may significantly improve freezing outcomes of ram spermatozoa.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Preservação do Sêmen/métodos , Sêmen/química , Proteínas de Plasma Seminal/química , Espermatozoides/metabolismo , Animais , Bovinos , Fertilidade/fisiologia , Congelamento/efeitos adversos , Masculino , Fosfatidiletanolaminas/metabolismo , Ovinos , Motilidade dos Espermatozoides/fisiologia
17.
J Neuroendocrinol ; : e12593, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543369

RESUMO

Somatostatin (SST) a neuropeptide involved in the central modulation of several physiological functions, is co-distributed in the same hypothalamic areas as kisspeptin (KP), the most potent secretagogue of the gonadotropin-releasing hormone (GnRH) secretion known to date. As SST infused intracerebroventricularly (icv) evoked a potent inhibition of GnRH release, we explored neuroanatomical relationships between KP and SST populations in male and female rats. For that, intact males and ovariectomised oestradiol-replaced females were killed and their brains processed in order to simultaneously detect KP, SST and synapsin, a marker for synapses. We observed numerous appositions of KP on SST neurones both in female and male arcuate nucleus (ARC) and ventromedial hypothalamus. A large association between SST terminals and KP neurones at the level of the pre-optic area (POA) was also observed in female rats and in a more limited frame in males. Finally, most KP neurones from the ARC showed SST appositions in both sexes. To determine whether SST could affect KP cell activity, we assessed whether SST receptors (SSTR) were present on KP neurones in the ARC. We also looked for the presence of SSTR1 and SSTR2A in the brain of male rats. Brains were processed through a sequential double immunocytochemistry in order to detect KP and SSTR1 or KP and SSTR2A. We observed overlapping distributions of immunoreactive neurones for SSTR1 and KP and counted approximately one third of KP neurones with SSTR1. In contrast, neurones labelled for SSTR2A or KP were often juxtaposed in the ARC and the occurrence of double-labelled neurones was sporadic (<5%). These results suggest that SST action on KP neurones would pass mainly through SSTR1 at the level of the ARC. This article is protected by copyright. All rights reserved.

18.
Biol Reprod ; 98(6): 765-775, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415221

RESUMO

Binder of Sperm Proteins (BSPs) are the most abundant seminal plasma protein family in the ram and bull. They have been extensively studied in the bull but less is known about their function in ovine seminal plasma and current knowledge suggests that BSPs may have different effects in these two species. In the bull, they facilitate capacitation and destabilize the sperm membrane during in vitro handling, whereas in the ram, they appear to stabilize the sperm membrane and prevent cryopreservation-induced capacitation-like changes. Further investigation into the effects of BSPs on ram spermatozoa under capacitating conditions is required to further clarify their physiological roles in the ram. We investigated the effects of Binder of Sperm Proteins 1 and 5 on epididymal ram spermatozoa in conditions of low, moderate, and high cAMP. BSPs had minimal effects on sperm function in low-cAMP conditions, but caused significant changes under cAMP upregulation. BSP1 stabilized the membrane and qualitatively reduced protein tyrosine phosphorylation, but significantly increased cholesterol efflux and induced spontaneous acrosome reactions. BSP5 slightly increased spontaneous acrosome reactions and caused sperm necrosis. However, BSP5 had minimal effects on membrane lipid order and cholesterol efflux and did not inhibit protein tyrosine phosphorylation. These findings demonstrate that under maximal cAMP upregulation, BSP1 affected ram spermatozoa in a manner comparable to bull spermatozoa, while BSP5 did not.


Assuntos
Epididimo/efeitos dos fármacos , Proteínas Secretadas pela Vesícula Seminal/farmacologia , Capacitação Espermática/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Epididimo/metabolismo , Masculino , Sêmen/efeitos dos fármacos , Sêmen/metabolismo , Ovinos , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo
19.
J Proteomics ; 175: 56-74, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28385661

RESUMO

Intact cell MALDI-TOF mass spectrometry (ICM-MS) was adapted to bovine follicular cells from individual ovarian follicles to obtain the protein/peptide signatures (<17kDa) of single oocytes, cumulus cells (CC) and granulosa cells (GC), which shared a total of 439 peaks. By comparing the ICM-MS profiles of single oocytes and CC before and after in vitro maturation (IVM), 71 different peaks were characterised, and their relative abundance was found to vary depending on the stage of oocyte meiotic maturation. To identify these endogenous biomolecules, top-down workflow using high resolution MS/MS (TD HR-MS) was performed on the protein extracts from oocytes, CC and GC. The TD HR-MS proteomic approach allowed for: (1) identification of 386 peptide/proteoforms encoded by 194 genes; and (2) characterisation of proteolysis products likely resulting from the action of kallikreins and caspases. In total, 136 peaks observed by ICM-MS were annotated by TD HR-MS (ProteomeXchange PXD004892). Among these, 16 markers of maturation were identified, including IGF2 binding protein 3 and hemoglobin B in the oocyte, thymosins beta-4 and beta-10, histone H2B and ubiquitin in CC. The combination of ICM-MS and TD HR-MS proved to be a suitable strategy to identify non-invasive markers of oocyte quality using limited biological samples. BIOLOGICAL SIGNIFICANCE: Intact cell MALDI-TOF mass spectrometry on single oocytes and their surrounding cumulus cells, coupled to an optimised top-down HR-MS proteomic approach on ovarian follicular cells, was used to identify specific markers of oocyte meiotic maturation represented by whole low molecular weight proteins or products of degradation by specific proteases.


Assuntos
Oócitos/citologia , Folículo Ovariano/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Biomarcadores/análise , Bovinos , Células do Cúmulo/química , Feminino , Células da Granulosa/química , Meiose , Oócitos/química , Folículo Ovariano/química
20.
J Ovarian Res ; 10(1): 74, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122003

RESUMO

BACKGROUND: Supplementation of bovine oocyte-cumulus complexes during in vitro maturation (IVM) with 1 µM of docosahexaenoic acid (DHA), C22:6 n-3 polyunsaturated fatty acid, was reported to improve in vitro embryo development. The objective of this paper was to decipher the mechanisms of DHA action. RESULTS: Transcriptomic analysis of 1 µM DHA-treated and control cumulus cells after 4 h IVM showed no significant difference in gene expression. MALDI-TOF mass spectrometry analysis of lipid profiles in DHA-treated and control oocytes and cumulus cells after IVM showed variations of only 3 out of 700 molecular species in oocytes and 7 out of 698 species in cumulus cells (p < 0.01). We showed expression of free fatty acid receptor FFAR4 in both oocytes and cumulus cells, this receptor is known to be activated by binding to DHA. FFAR4 protein was localized close to the cellular membrane by immunofluorescence. Functional studies demonstrated that supplementation with FFAR4 agonist TUG-891 (1 µM or 5 µM) during IVM led to an increased blastocyst rate (39.5% ± 4.1%, 41.3% ± 4.1%), similar to DHA 1 µM treatment (39.2% ± 4.1%) as compared to control (25.2% ± 3.6%). FFAR4 activation via TUG-891 led to beneficial effect on oocyte developmental competence and might explain in part similar effects of DHA. CONCLUSIONS: In conclusion, we suggested that low dose of DHA (1 µM) during IVM might activate regulatory mechanisms without evident effect on gene expression and lipid content in oocyte-cumulus complexes, likely through signaling pathways which need to be elucidated in further studies.


Assuntos
Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Animais , Bovinos , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Técnicas de Maturação in Vitro de Oócitos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA