Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30271575

RESUMO

The Norwegian e-Infrastructure for Life Sciences (NeLS) has been developed by ELIXIR Norway to provide its users with a system enabling data storage, sharing, and analysis in a project-oriented fashion. The system is available through easy-to-use web interfaces, including the Galaxy workbench for data analysis and workflow execution. Users confident with a command-line interface and programming may also access it through Secure Shell (SSH) and application programming interfaces (APIs).  NeLS has been in production since 2015, with training and support provided by the help desk of ELIXIR Norway. Through collaboration with NorSeq, the national consortium for high-throughput sequencing, an integrated service is offered so that sequencing data generated in a research project is provided to the involved researchers through NeLS. Sensitive data, such as individual genomic sequencing data, are handled using the TSD (Services for Sensitive Data) platform provided by Sigma2 and the University of Oslo. NeLS integrates national e-infrastructure storage and computing resources, and is also integrated with the SEEK platform in order to store large data files produced by experiments described in SEEK.   In this article, we outline the architecture of NeLS and discuss possible directions for further development.


Assuntos
Disciplinas das Ciências Biológicas , Sistemas de Gerenciamento de Base de Dados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Noruega
2.
BMC Bioinformatics ; 15: 427, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25547242

RESUMO

BACKGROUND: Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics-function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins. RESULTS: We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma . CONCLUSION: WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.


Assuntos
Bases de Dados de Proteínas , Internet , Redes e Vias Metabólicas , Proteínas/química , Software , Adenilato Quinase/química , Humanos , Família Multigênica , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Alinhamento de Sequência
3.
Arthritis Res Ther ; 15(5): R174, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24286337

RESUMO

INTRODUCTION: Our understanding of autoimmunity is skewed considerably towards the late stages of overt disease and chronic inflammation. Defining the targeted organ's role during emergence of autoimmune diseases is, however, critical in order to define their etiology, early and covert disease phases and delineate their molecular basis. METHODS: Using Sjögren's syndrome (SS) as an exemplary rheumatic autoimmune disease and temporal global gene-expression profiling, we systematically mapped the transcriptional landscapes and chronological interrelationships between biological themes involving the salivary glands' extracellular milieu. The time period studied spans from pre- to subclinical and ultimately to onset of overt disease in a well-defined model of spontaneous SS, the C57BL/6.NOD-Aec1Aec2 strain. In order to answer this aim of great generality, we developed a novel bioinformatics-based approach, which integrates comprehensive data analysis and visualization within interactive networks. The latter are computed by projecting the datasets as a whole on a priori-defined consensus-based knowledge. RESULTS: Applying these methodologies revealed extensive susceptibility loci-dependent aberrations in salivary gland homeostasis and integrity preceding onset of overt disease by a considerable amount of time. These alterations coincided with innate immune responses depending predominantly on genes located outside of the SS-predisposing loci Aec1 and Aec2. Following a period of transcriptional stability, networks mapping the onset of overt SS displayed, in addition to natural killer, T- and B-cell-specific gene patterns, significant reversals of focal adhesion, cell-cell junctions and neurotransmitter receptor-associated alterations that had prior characterized progression from pre- to subclinical disease. CONCLUSIONS: This data-driven methodology advances unbiased assessment of global datasets an allowed comprehensive interpretation of complex alterations in biological states. Its application delineated a major involvement of the targeted organ during the emergence of experimental SS.


Assuntos
Autoimunidade/genética , Perfilação da Expressão Gênica , Glândulas Salivares/metabolismo , Síndrome de Sjogren/genética , Algoritmos , Animais , Autoimunidade/imunologia , Análise por Conglomerados , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/imunologia , Feminino , Redes Reguladoras de Genes , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Análise de Sequência com Séries de Oligonucleotídeos , Glândulas Salivares/imunologia , Síndrome de Sjogren/imunologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA