Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(7): e1011344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39074161

RESUMO

Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.


Assuntos
Anopheles , Sistema Enzimático do Citocromo P-450 , Elementos de DNA Transponíveis , Resistência a Inseticidas , Inseticidas , Malária , Mosquitos Vetores , Piretrinas , Animais , Anopheles/genética , Anopheles/parasitologia , Anopheles/efeitos dos fármacos , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão , Malária/parasitologia , Malária/genética , Elementos de DNA Transponíveis/genética , Sistema Enzimático do Citocromo P-450/genética , Inseticidas/farmacologia , Uganda , Humanos , Camarões
2.
BMC Infect Dis ; 22(1): 799, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284278

RESUMO

BACKGROUND: Aggravation of insecticide resistance in malaria vectors is threatening the efforts to control malaria by reducing the efficacy of insecticide-based interventions hence needs to be closely monitored. This study investigated the intensity of insecticide resistance of two major malaria vectors An. funestus sensu stricto (s.s.) and An. gambiae sensu lato (s.l.) collected in southern Ghana and assessed the bio-efficacy of several long-lasting insecticidal nets (LLINs) against these mosquito populations. METHODS: The insecticide susceptibility profiles of Anopheles funestus s.s. and Anopheles gambiae s.l. populations from Obuasi region (Atatam), southern Ghana were characterized and the bio-efficacy of some LLINs was assessed to determine the impact of insecticide resistance on the effectiveness of these tools. Furthermore, molecular markers associated with insecticide resistance in both species were characterized in the F0 and F1 populations using PCR and qPCR methods. RESULTS: Anopheles funestus s.s. was the predominant species and was resistant to pyrethroids, organochlorine and carbamate insecticides, but fully susceptible to organophosphates. An. gambiae s.l. was resistant to all four insecticide classes. High intensity of resistance to 5 × and 10 × the discriminating concentration (DC) of pyrethroids was observed in both species inducing a considerable loss of efficacy of long-lasting insecticidal nets (LLINs). Temporal expression analysis revealed a massive 12-fold increase in expression of the CYP6P4a cytochrome P450 gene in An. funestus s.s., initially from a fold change of 41 (2014) to 500 (2021). For both species, the expression of candidate genes did not vary according to discriminating doses. An. gambiae s.l. exhibited high frequencies of target-site resistance including Vgsc-1014F (90%) and Ace-1 (50%) while these mutations were absent in An. funestus s.s. CONCLUSIONS: The multiple and high intensity of resistance observed in both malaria vectors highlights the need to implement resistance management strategies and the introduction of new insecticide chemistries.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Humanos , Animais , Anopheles/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Gana , Mosquitos Vetores/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Carbamatos , Organofosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA