Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397563

RESUMO

Enterococci, known for their resilience, are commonly found in food, the environment, and the gastrointestinal tracts of humans and animals. In recent research, six strains of enterococcus were isolated from bat guano. These include Enterococcus mundtii SRBG1, Enterococcus gallinarum SRBG3, Enterococcus faecium SRBG2, Enterococcus casseliflavus EC1, and Enterococcus devriesei CAU 1344. Identification was done using 16S DNA analysis. Each strain underwent evaluation for its technological properties (such as tolerances to various NaCl concentrations and temperatures, as well as amylolytic, ß-galactosidase, lipolytic, and proteolytic activities, and EPS production) and selected probiotic properties (including safety profile, resistance to 0.3 percent bile salts and gastric juice with a pH of 2.5, lysozyme tolerance, and antibacterial and antibiofilm activities against four foodborne pathogens). The results were analyzed using Principal Component Analysis. This analysis revealed that E. mundtii SRBG1 and E. gallinarum SRBG3, followed by E. faecium SRBG2, were most closely associated with a broad range of technological characteristics and were subsequently used for fermenting skimmed milk. The rheological properties of the samples indicated a shear-thinning or non-Newtonian behavior. Furthermore, during storage of the fermented milk at 4 °C over periods of 1, 7, 14, and 21 days, there were no significant changes in bacterial count (at around 7 log10 CFU/mL) and pH when fermented with the three evaluated strains.

2.
Heliyon ; 10(3): e25551, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327454

RESUMO

Succinic acid (SA) production is continuously rising, as its applications in diverse end-product generation are getting broader and more expansive. SA is an eco-friendly bulk product that acts as a valuable intermediate in different processes and might substitute other petrochemical-based products due to the inner capacity of microbes to biosynthesize it. Moreover, large amounts of SA can be obtained through biotechnological ways starting from renewable resources, imprinting at the same time the concept of a circular economy. In this context, the target of the present review paper is to bring an overview of SA market demands, production, biotechnological approaches, new strategies of production, and last but not least, the possible limitations and the latest perspectives in terms of natural biosynthesis of SA.

3.
Foods ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254559

RESUMO

This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.

4.
Foods ; 12(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37835197

RESUMO

Interest in functional foods is continuously increasing, having the potential to be an ally in reducing cardiometabolic risk factors. This study focuses on developing and evaluating oat- and millet-based snack bars enriched with freeze-dried elderberry powder (FDEBP), aiming to combine great taste with enhanced nutritional value, antioxidant properties, and prebiotic potential. The research encompassed a sensory evaluation, nutritional assessment, and rheological analysis of the snack bars. A hedonic test was conducted to gauge consumer preferences and overall liking, providing insights into taste, texture, and acceptance. Sensory evaluation revealed positive feedback from participants, and acceptance rating scores ranged from 7 to 8.04, the best score recorded by one of the enhanced bars with 1% FDEBP. The rheological analysis determined the bars' dynamic storage modulus (G') and loss modulus (G″), assessing the material's elasticity and mechanical properties. Results showed that the incorporation of 0.5% and 1% FDEBP in the oat and millet snack bars significantly impacted their rheological properties, enhancing structural strength. Nutritional analysis demonstrated that the snack bars provided a complete mix of macronutrients required in a daily diet. The study sheds light on the potential of functional snack bars enriched with FDEBP, offering a delectable way to access essential nutrients and bioactive compounds in a minimally processed form, without the addition of sweeteners or additives, friendly to the gut microbiota.

5.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762062

RESUMO

Cardiometabolic diseases like hypertension, type 2 diabetes mellitus, atherosclerosis, and obesity have been associated with changes in the gut microbiota structure, or dysbiosis. The beneficial effect of polyphenols on reducing the incidence of this chronic disease has been confirmed by numerous studies. Polyphenols are primarily known for their anti-inflammatory and antioxidant properties, but they can also modify the gut microbiota. According to recent research, polyphenols positively influence the gut microbiota, which regulates metabolic responses and reduces systemic inflammation. This review emphasizes the prebiotic role of polyphenols and their impact on specific gut microbiota components in patients at cardiometabolic risk. It also analyzes the most recent research on the positive effects of polyphenols on cardiometabolic health. While numerous in vitro and in vivo studies have shown the interaction involving polyphenols and gut microbiota, additional clinical investigations are required to assess this effect in people.

6.
Nutrients ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242164

RESUMO

The cardiometabolic health of the population is a crucial indicator of public health, considering the significant impact of cardiovascular disease (CVD) and diabetes on global mortality. Determining the population's knowledge and the predictors of these pathologies is essential in developing effective educational and clinical strategies for the prevention and management of cardiometabolic risk (CMR). Polyphenols are natural compounds with a multitude of beneficial effects on cardiometabolic health. This study explored the current knowledge, understanding, and awareness of CMR, the benefits of polyphenols among Romanians, and how sociodemographic and clinical characteristics influence this aspect. Five hundred forty-six subjects responded anonymously to an online questionnaire designed to assess their knowledge. The data were collected and analyzed based on gender, age, education level, and BMI status. Most respondents expressed concern to a great or very great extent about their health (78%) and food (60%), with significant differences (p < 0.05) depending on age, educational level, and BMI status. Of the respondents, 64.8% declared that they were familiar with the CMR term. Still, the results showed a weak correlation between the stated risk factors and the self-assessment of increased risk (r = 0.027) for CVD or diabetes. Only 35% of the respondents reported a good or very good knowledge of the term "polyphenols", 86% recognized the antioxidant effect, and significantly fewer (26%) recognized the prebiotic effect. Developing and implementing targeted educational strategies to enhance learning and individual behaviors related to CMR factors and the benefits of polyphenols is necessary.


Assuntos
Doenças Cardiovasculares , Conhecimentos, Atitudes e Prática em Saúde , Polifenóis , Humanos , Doenças Cardiovasculares/etiologia , Fatores de Risco
8.
Foods ; 12(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174421

RESUMO

One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.

9.
Molecules ; 28(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049862

RESUMO

Due to its abundance of physiologically active ingredients, one of the oldest medicinal herbs, elderberry (EB) Sambucus nigra L., is beneficial for both therapeutic and dietary purposes. This study determined the bioaccessibility of the phenolic compounds and the prebiotic potential of the polyphenols from freeze-dried EB powder (FDEBP), along with the antioxidant and antimicrobial activities of this extract. The most significant phenolic compounds in black EB are represented by anthocyanins (41.8%), predominating cyanidin-sambubiosides and cyanidin-glucosides (90.1% of the identified anthocyanins). The FRAP assay obtained the highest antioxidant activity value (185 ± 0.18 µmol Fe2+/g DW). The most sensitive to the antimicrobial activity of the extract was proven to be Staphylococcus aureus, and Pseudomonas aeruginosa had the lowest minimum inhibitory concentration of 1.95 mg/mL. To determine the prebiotic potential of the polyphenols, the cell growth of five probiotic strains (Lactobacillus plantarum, L. casei, L. rhamnosus, L. fermentum and Saccharomyces boulardii) was tested. The influence on cell growth was positive for all five probiotic strains used. Overall, the most significant increase (p < 0.05) was recorded at 1.5% FDEBP, on L. casei with a growth index (GI) of 152.44%, very closely followed by GI at 0.5% and 1% concentrations. The stability of the total phenolic compounds through simulated gastronitestinal digestion was increased (93%), and the bioaccessibility was also elevated (75%).


Assuntos
Anti-Infecciosos , Sambucus nigra , Sambucus , Antioxidantes/farmacologia , Antocianinas/farmacologia , Prebióticos , Fenóis , Polifenóis/farmacologia , Polifenóis/análise , Extratos Vegetais/farmacologia , Anti-Infecciosos/farmacologia
10.
Biomolecules ; 13(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830613

RESUMO

The area of functional beverages made from plant-based or non-dairy milk is one of the fastest-growing sectors in the world. The microalgae Chlorella vulgaris is a source of functional ingredients, with a large spectrum of healthy compounds, such as canthaxanthins, astaxanthins, peptides, and oleic acid. The study aimed to investigate the suitability of C. vulgaris biomass as a substrate for Lactobacillus fermentum and Lactobacillus rhamnosus development and fermentation in vegetal soy beverages and to evaluate the fermented product in terms of bacterial viability, antioxidant capacity, and in vitro bio-accessibility. During fermentation, a bacterial concentration of 8.74 log10 CFU/mL was found in the soy beverage with C. vulgaris and L. rhamnosus, and 8.71 log10 CFU/mL in beverage with C. vulgaris and L. fermentum. Polyphenol content and dietary antioxidant capacity significantly improved after fermentation soy drinks. On the other hand, through the digestibility of the beverages, the bacterial viability significantly decreased. To comprehend the components responsible for the efficient delivery of bacteria across the gastrointestinal tract, further investigation is required on probiotic encapsulation methods.


Assuntos
Chlorella vulgaris , Glycine max , Pós , Antioxidantes , Bebidas Fermentadas , Fermentação , Bactérias
11.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432076

RESUMO

Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.


Assuntos
Malus , Solanum lycopersicum , Polifenóis/análise , Solanum lycopersicum/química , Grão Comestível , Frutas/química , Fenóis/análise , Flavonoides/análise
12.
Int J Biol Macromol ; 222(Pt B): 3229-3242, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243160

RESUMO

A novel exopolysaccharide was isolated from Bacillus velezensis RSDM1, purified and characterized. The optimization was carried out by Box-Behnken design and the highest yield of EPS-RSDM1 was 1969.53 mg/L. The EPS was composed by glucose with a molecular weight of 1.78 × 104 Da and connected by α-1,6 and α-1,3. The EPS was thermally stable and showed pseudoplastic rheology. The SEM have demonstrated a porous structure. Furthermore, EPS-RSDM1 showed a protective effect against the oxidative stress induced by H2O2 in Tetrahymena thermophila. The exposure of the cells to H2O2 reduced significantly the cell survival and CAT, SOD, GR, SDH and GAPDH activities, and increased the MDA production. However, pretreatment of the cells with EPS-RSDM1 prior to H2O2 exposure elevated the cell survival and enzyme activities, and decreased the level of MDA activity. Our study suggest that EPS-RSDM1 could be useful for preventing cellular oxidation in pharmaceutical and food industries.


Assuntos
Glucanos , Tetrahymena thermophila , Peróxido de Hidrogênio/farmacologia , Polissacarídeos Bacterianos/química , Estresse Oxidativo , Peso Molecular
13.
Curr Res Food Sci ; 5: 1713-1719, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212080

RESUMO

In the current research, Enterococcus mundtii SRBG1 newly isolated from Bat guano was encapsulated using spray drying technique to create a probiotic powder using six combinations of inulin, maltodextrin and sodium alginate. The encapsulation yield, moisture content, physical characteristics, and shape were investigated. Microcapsules yields ranged from 67 to 85 percent, which is consistent with typical B-290 spray-drier yields. The moisture content showed to increase (4 ± 0.15%) with the addition of sodium alginate to inulin and maltodextrin. In the gastrointestinal conditions (simulated gastric juice and bile salts), it was shown that the viability of probiotic cells in capsules was higher than that of free cells. This demonstrated the effectiveness of combining inulin and maltodextrin to encapsulate substances in surviving in gastro-intestinal conditions. Additionally, we evaluated the non-encapsulated and encapsulated SRBG1 by assessing their impact on the rheological parameters of fermented milk. The results showed that in the absence of sodium alginate the viscosity of milk was lower than with the other protectors, which was confirmed by the quick acidification of the fermented milk by microcapsules containing sodium alginate.

14.
Sci Rep ; 12(1): 17535, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266426

RESUMO

Frozen dough storage, along with its thawing process, negatively affects the quality of the final product. Thus, fermentation with selected cultures and the enrichment of wheat-based dough using a specific soy powder could optimize the viscoelastic quality of frozen dough and increase its nutritional characteristics. Based on these aspects, the present study's objective was to examine the effects of soy powder addition to wheat flour with single cultures of Fructilactobacillus florum DSM 22689 or Saccharomyces cerevisiae and coculture with these two microorganisms for 72 h of fermentation. Additionally, the fermentation process was monitored, and viscoelastic behavior and physical-chemical analyses of the fermented sourdough before and after frozen storage were assessed, as soy protein has been proposed to hinder water migration throughout frozen storage. As observed, soy powder, an essential functional ingredient, had a favorable impact on the water-starch-gluten system, and enhanced the viscoelastic behavior before and after 4 weeks of frozen storage.


Assuntos
Pão , Farinha , Farinha/análise , Pão/análise , Triticum/química , Proteínas de Soja/química , Pós , Glutens/química , Amido , Água/química
15.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139803

RESUMO

The production of active and biodegradable packaging materials is an emerging and efficient alternative to plastic packaging materials. By combining poly(vinyl alcohol) (PVA), pectin, and itaconic acid (IA), biodegradable and water-soluble packaging materials can be obtained that can also increase the shelf-life and quality of foodstuff. In the present study, the generated film-forming solutions were enriched with organic or phenolic extracts from apple by-products (apple pomace). These extracts possess an efficient antioxidant activity of 9.70 ± 0.08, and 78.61 ± 0.24 µM Trolox/100 g fresh weight, respectively. Furthermore, the lyophilization of these by-products increased the extract's organic and phenolic content and the antioxidant activity to 67.45 ± 0.28 and 166.69 ± 0.47 µM Trolox/100 g fresh weight, respectively. These extracts influence the physical-chemical properties of the biofilm solutions by facilitating the polymerization process and thus positively influencing their viscosity. The resulting biofilms presented low water vapor permeability and reduced solubility in water. Adding IA and organic/phenolic compounds facilitates the resistance against intrinsic and extrinsic factors; therefore, they might be applicable in the food industry.

16.
Gels ; 8(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005125

RESUMO

Nowadays, edible materials such as polysaccharides have gained attention due to their valuable attributes, especially gelling property. Polysaccharide-based edible gels (PEGs) can be classified as (i) hydrogels, (ii) oleogels and bigels, (iii) and aerogels, cryogels and xerogels, respectively. PEGs have different characteristics and benefits depending on the functional groups of polysaccharide chains (e.g., carboxylic, sulphonic, amino, methoxyl) and on the preparation method. However, PEGs are found in the incipient phase of research and most studies are related to their preparation, characterization, sustainable raw materials, and applicability. Furthermore, all these aspects are treated separately for each class of PEG, without offering an overview of those already obtained PEGs. The novelty of this manuscript is to offer an overview of the classification, definition, formulation, and characterization of PEGs. Furthermore, the applicability of PEGs in the food sector (e.g., food packaging, improving food profile agent, delivery systems) and in the medical/pharmaceutical sector is also critically discussed. Ultimately, the correlation between PEG consumption and polysaccharides properties for human health (e.g., intestinal microecology, "bridge effect" in obesity, gut microbiota) are critically discussed for the first time. Bigels may be valuable for use as ink for 3D food printing in personalized diets for human health treatment. PEGs have a significant role in developing smart materials as both ingredients and coatings and methods, and techniques for exploring PEGs are essential. PEGs as carriers of bioactive compounds have a demonstrated effect on obesity. All the physical, chemical, and biological interactions among PEGs and other organic and inorganic structures should be investigated.

17.
Front Bioeng Biotechnol ; 10: 888827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814014

RESUMO

To improve food production via fermentation with co-cultures of microorganisms (e.g., multiple lactic acid bacteria-LAB strains), one must fully understand their metabolism and interaction patterns in various conditions. For example, LAB can bring added quality to bread by releasing several bioactive compounds when adding soy flour to wheat flour, thus revealing the great potential for functional food development. In the present work, the fermentation of three soy and wheat flour mixtures is studied using single cultures and co-cultures of Lactobacillus plantarum and Lactobacillus casei. Bio-chemical processes often require a significant amount of time to obtain the optimal amount of final product; creating a mathematical model can gain important information and aids in the optimization of the process. Consequently, mathematical modeling is used to optimize the fermentation process by following these LAB's growth kinetics and viability. The present work uses both multiple regression and artificial neural networks (ANN) to obtain the necessary mathematical model, useful in both prediction and process optimization. The main objective is to find a model with optimal performances, evaluated using an ANOVA test. To validate each obtained model, the simulation results are compared with the experimental data.

18.
Molecules ; 27(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744898

RESUMO

The recovery of bioactive compounds from agro-industry-derived by-products sustains circular economy principles by encouraging maximized recycling and minimized waste. Tomato processing by-products are abundant in carotenoids, which have several health-promoting properties, and their reintegration into functional food products represents a major interest for scientists and manufacturers. In the present study, carotenoids were recovered from tomato processing by-products based on the principles of green chemistry by using generally recognized as safe (GRAS) solvents, freeze-drying as pretreatment, and ultrasound in the recovery procedure. Spectrophotometric measurements and HPLC were used to identify and quantify total and individual carotenoids from the extracts. The highest values for lycopene (1324.89 µg/g dw) were obtained when ethyl lactate was applied as a solvent, followed by ethyl acetate with slightly smaller differences (1313.54 µg/g dw). The extracts obtained from freeze-dried samples presented significantly lower amounts of lycopene, indicating that carotenoids are highly susceptible to degradation during lyophilization. Flaxseed, grape seed, and hempseed oils were enriched with carotenoids and their rheological measurements showed favorable viscoelastic properties, especially hempseed and flaxseed oil, with viscosity under 50 mPa·s. Considering the results and the economic perspective of carotenoid recovery from tomato processing by-products, ethyl acetate is suitable, sustainable, and environmentally friendly for carotenoid extraction.


Assuntos
Solanum lycopersicum , Carotenoides/química , Licopeno , Solanum lycopersicum/química , Extratos Vegetais , Óleos de Plantas/química , Solventes
19.
Front Med (Lausanne) ; 9: 813204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433746

RESUMO

Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota's potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson's disease, Alzheimer's disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome's role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.

20.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453359

RESUMO

In recent years, Vaccinium spp. (bilberry-VMT, lingonberry-VVIT, and blueberry-VCS) have sparked particular interest for their prospective health benefits. The latest investigations have place them as important alternative sources of nutraceuticals as their leaves are the main by-products of berry harvesting. The present study is aimed at investigating the bioaccessibility of phenolic compounds from leaves of the Vaccinium species, both as microencapsulated powder and aqueous extracts, following exposure to in vitro simulated digestion. Moreover, the impact of maltodextrin and glucose microencapsulation carriers on the extracts' phenolic content was assessed. Prior to encapsulation, the viscosity of the emulsions was shown at a shear stress of 50 s-1 dilatant and a Newtonian behaviour above this value with a final viscosity between 1.024 and 1.049 mPa·s. The final microencapsulation yield for the samples ranged between 79 and 81%. Although the microencapsulated forms presented a targeted release at the intestinal level, the phenolic content decreased after gastrointestinal digestion. The bioaccessibility of the microencapsulated extracts showed higher values than their non-encapsulated counterparts, with the highest value of 45.43% in the VVIT sample, followed by VCS with 41.07%. However, the non-encapsulated VCS sample presented high bioaccessibility after in vitro digestion (38.65%). As concluded, further in vivo research should be conducted on the leaves of the Vaccinium species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA