Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 18(6): e1010230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709096

RESUMO

Central nervous system-expressed long non-coding RNAs (lncRNAs) are often located in the genome close to protein coding genes involved in transcriptional control. Such lncRNA-protein coding gene pairs are frequently temporally and spatially co-expressed in the nervous system and are predicted to act together to regulate neuronal development and function. Although some of these lncRNAs also bind and modulate the activity of the encoded transcription factors, the regulatory mechanisms controlling co-expression of neighbouring lncRNA-protein coding genes remain unclear. Here, we used high resolution NG Capture-C to map the cis-regulatory interaction landscape of the key neuro-developmental Paupar-Pax6 lncRNA-mRNA locus. The results define chromatin architecture changes associated with high Paupar-Pax6 expression in neurons and identify both promoter selective as well as shared cis-regulatory-promoter interactions involved in regulating Paupar-Pax6 co-expression. We discovered that the TCF7L2 transcription factor, a regulator of chromatin architecture and major effector of the Wnt signalling pathway, binds to a subset of these candidate cis-regulatory elements to coordinate Paupar and Pax6 co-expression. We describe distinct roles for Paupar in Pax6 expression control and show that the Paupar DNA locus contains a TCF7L2 bound transcriptional silencer whilst the Paupar transcript can act as an activator of Pax6. Our work provides important insights into the chromatin interactions, signalling pathways and transcription factors controlling co-expression of adjacent lncRNAs and protein coding genes in the brain.


Assuntos
RNA Longo não Codificante , Cromatina/genética , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
2.
Nat Commun ; 13(1): 3485, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710802

RESUMO

The chromatin remodeller ATRX interacts with the histone chaperone DAXX to deposit the histone variant H3.3 at sites of nucleosome turnover. ATRX is known to bind repetitive, heterochromatic regions of the genome including telomeres, ribosomal DNA and pericentric repeats, many of which are putative G-quadruplex forming sequences (PQS). At these sites ATRX plays an ancillary role in a wide range of nuclear processes facilitating replication, chromatin modification and transcription. Here, using an improved protocol for chromatin immunoprecipitation, we show that ATRX also binds active regulatory elements in euchromatin. Mutations in ATRX lead to perturbation of gene expression associated with a reduction in chromatin accessibility, histone modification, transcription factor binding and deposition of H3.3 at the sequences to which it normally binds. In erythroid cells where downregulation of α-globin expression is a hallmark of ATR-X syndrome, perturbation of chromatin accessibility and gene expression occurs in only a subset of cells. The stochastic nature of this process suggests that ATRX acts as a general facilitator of cell specific transcriptional and epigenetic programmes, both in heterochromatin and euchromatin.


Assuntos
Cromatina , Heterocromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Eucromatina/genética , Heterocromatina/genética , Histonas/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Talassemia alfa
3.
Nat Commun ; 13(1): 773, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140205

RESUMO

The transcription factor RUNX1 is a critical regulator of developmental hematopoiesis and is frequently disrupted in leukemia. Runx1 is a large, complex gene that is expressed from two alternative promoters under the spatiotemporal control of multiple hematopoietic enhancers. To dissect the dynamic regulation of Runx1 in hematopoietic development, we analyzed its three-dimensional chromatin conformation in mouse embryonic stem cell (ESC) differentiation cultures. Runx1 resides in a 1.1 Mb topologically associating domain (TAD) demarcated by convergent CTCF motifs. As ESCs differentiate to mesoderm, chromatin accessibility, Runx1 enhancer-promoter (E-P) interactions, and CTCF-CTCF interactions increase in the TAD, along with initiation of Runx1 expression from the P2 promoter. Differentiation to hematopoietic progenitor cells is associated with the formation of tissue-specific sub-TADs over Runx1, a shift in E-P interactions, P1 promoter demethylation, and robust expression from both Runx1 promoters. Deletion of promoter-proximal CTCF sites at the sub-TAD boundaries has no obvious effects on E-P interactions but leads to partial loss of domain structure, mildly affects gene expression, and delays hematopoietic development. Together, our analysis of gene regulation at a large multi-promoter developmental gene reveals that dynamic sub-TAD chromatin boundaries play a role in establishing TAD structure and coordinated gene expression.


Assuntos
Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Expressão Gênica , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , DNA/química , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Mesoderma/metabolismo , Camundongos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas
4.
Nat Commun ; 12(1): 4439, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290235

RESUMO

The α- and ß-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Ativação Transcricional , Globinas zeta/genética , Acetilação , Animais , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , alfa-Globinas/genética
5.
Nat Commun ; 12(1): 3806, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155213

RESUMO

Many single nucleotide variants (SNVs) associated with human traits and genetic diseases are thought to alter the activity of existing regulatory elements. Some SNVs may also create entirely new regulatory elements which change gene expression, but the mechanism by which they do so is largely unknown. Here we show that a single base change in an otherwise unremarkable region of the human α-globin cluster creates an entirely new promoter and an associated unidirectional transcript. This SNV downregulates α-globin expression causing α-thalassaemia. Of note, the new promoter lying between the α-globin genes and their associated super-enhancer disrupts their interaction in an orientation-dependent manner. Together these observations show how both the order and orientation of the fundamental elements of the genome determine patterns of gene expression and support the concept that active genes may act to disrupt enhancer-promoter interactions in mammals as in Drosophila. Finally, these findings should prompt others to fully evaluate SNVs lying outside of known regulatory elements as causing changes in gene expression by creating new regulatory elements.


Assuntos
Elementos Facilitadores Genéticos/genética , Mutação com Ganho de Função/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Humanos , Família Multigênica , Mutação Puntual , Transcrição Gênica/genética , alfa-Globinas/genética , Talassemia alfa/genética
6.
Mol Cell ; 81(5): 983-997.e7, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539786

RESUMO

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and ß-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , Iniciação da Transcrição Genética , alfa-Globinas/genética , Globinas beta/genética , Animais , Diferenciação Celular , Éxons , Feto , Regulação da Expressão Gênica , Biblioteca Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Íntrons , Células K562 , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , alfa-Globinas/deficiência , Globinas beta/deficiência
7.
Nat Commun ; 12(1): 531, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483495

RESUMO

Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation.


Assuntos
Núcleo Celular/genética , Cromatina/genética , Células Eritroides/metabolismo , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Células Cultivadas , Mapeamento Cromossômico/métodos , Biologia Computacional/métodos , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
8.
Nat Methods ; 17(11): 1118-1124, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33046896

RESUMO

Predicting the impact of noncoding genetic variation requires interpreting it in the context of three-dimensional genome architecture. We have developed deepC, a transfer-learning-based deep neural network that accurately predicts genome folding from megabase-scale DNA sequence. DeepC predicts domain boundaries at high resolution, learns the sequence determinants of genome folding and predicts the impact of both large-scale structural and single base-pair variations.


Assuntos
Genoma Humano/genética , Genômica/métodos , Modelos Genéticos , Redes Neurais de Computação , Sequência de Bases , Fator de Ligação a CCCTC/genética , Cromatina/genética , Simulação por Computador , Variação Estrutural do Genoma , Humanos
9.
Nat Commun ; 11(1): 2722, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483172

RESUMO

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.


Assuntos
Diferenciação Celular/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Regiões Promotoras Genéticas/genética , Células-Tronco/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Cromossomos de Mamíferos/genética , Feminino , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco/citologia
10.
Cell Rep ; 30(7): 2125-2135.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075757

RESUMO

We investigate the three-dimensional (3D) conformations of the α-globin locus at the single-allele level in murine embryonic stem cells (ESCs) and erythroid cells, combining polymer physics models and high-resolution Capture-C data. Model predictions are validated against independent fluorescence in situ hybridization (FISH) data measuring pairwise distances, and Tri-C data identifying three-way contacts. The architecture is rearranged during the transition from ESCs to erythroid cells, associated with the activation of the globin genes. We find that in ESCs, the spatial organization conforms to a highly intermingled 3D structure involving non-specific contacts, whereas in erythroid cells the α-globin genes and their enhancers form a self-contained domain, arranged in a folded hairpin conformation, separated from intermingling flanking regions by a thermodynamic mechanism of micro-phase separation. The flanking regions are rich in convergent CTCF sites, which only marginally participate in the erythroid-specific gene-enhancer contacts, suggesting that beyond the interaction of CTCF sites, multiple molecular mechanisms cooperate to form an interacting domain.


Assuntos
Células Eritroides/metabolismo , Sequências Repetidas Invertidas/genética , alfa-Globinas/genética , Animais , Humanos , Camundongos
11.
Nat Commun ; 10(1): 5412, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776347

RESUMO

Specific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.


Assuntos
Cromatina/genética , Regiões Promotoras Genéticas , alfa-Globinas/genética , Animais , Sítios de Ligação , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Loci Gênicos , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Modelos Genéticos
12.
Dev Cell ; 51(2): 255-276.e7, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31639368

RESUMO

Precise control of developmental processes is encoded in the genome in the form of gene regulatory networks (GRNs). Such multi-factorial systems are difficult to decode in vertebrates owing to their complex gene hierarchies and dynamic molecular interactions. Here we present a genome-wide in vivo reconstruction of the GRN underlying development of the multipotent neural crest (NC) embryonic cell population. By coupling NC-specific epigenomic and transcriptional profiling at population and single-cell levels with genome/epigenome engineering in vivo, we identify multiple regulatory layers governing NC ontogeny, including NC-specific enhancers and super-enhancers, novel trans-factors, and cis-signatures allowing reverse engineering of the NC-GRN at unprecedented resolution. Furthermore, identification and dissection of divergent upstream combinatorial regulatory codes has afforded new insights into opposing gene circuits that define canonical and neural NC fates early during NC ontogeny. Our integrated approach, allowing dissection of cell-type-specific regulatory circuits in vivo, has broad implications for GRN discovery and investigation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Crista Neural/embriologia , Ativação Transcricional/genética , Animais , Heterogeneidade Genética , Vertebrados/genética
13.
Nat Commun ; 10(1): 2803, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31243293

RESUMO

Enhancer elements are a key regulatory feature of many important genes. Several general features including the presence of specific histone modifications are used to demarcate potentially active enhancers. Here we reveal that putative enhancers marked with H3 lysine 79 (H3K79) di or trimethylation (me2/3) (which we name H3K79me2/3 enhancer elements or KEEs) can be found in multiple cell types. Mixed lineage leukemia gene (MLL) rearrangements (MLL-r) such as MLL-AF4 are a major cause of incurable acute lymphoblastic leukemias (ALL). Using the DOT1L inhibitor EPZ-5676 in MLL-AF4 leukemia cells, we show that H3K79me2/3 is required for maintaining chromatin accessibility, histone acetylation and transcription factor binding specifically at KEEs but not non-KEE enhancers. We go on to show that H3K79me2/3 is essential for maintaining enhancer-promoter interactions at a subset of KEEs. Together, these data implicate H3K79me2/3 as having a functional role at a subset of active enhancers in MLL-AF4 leukemia cells.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Metiltransferases/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase , Histonas/genética , Humanos , Metilação , Metiltransferases/genética
14.
Nat Genet ; 50(12): 1744-1751, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374068

RESUMO

The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new chromosome conformation capture (3C) approach, to characterize concurrent chromatin interactions at individual alleles. Analysis by Tri-C identifies heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process. Within these domains, we observe specific higher-order structures that involve simultaneous interactions between multiple enhancers and promoters. Such regulatory hubs provide a structural basis for understanding how multiple cis-regulatory elements act together to establish robust regulation of gene expression.


Assuntos
Alelos , Cromatina , Loci Gênicos , Sequências Reguladoras de Ácido Nucleico , Animais , Sequência de Bases , Sítios de Ligação/genética , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Globinas/genética , Desequilíbrio de Ligação , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
15.
Nat Commun ; 9(1): 3849, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242161

RESUMO

Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.


Assuntos
Cromatina/metabolismo , Sequências Reguladoras de Ácido Nucleico , Animais , Células Eritroides/metabolismo , Hibridização in Situ Fluorescente , Camundongos , Cultura Primária de Células , Domínios Proteicos , alfa-Globinas/genética
16.
Methods Mol Biol ; 1832: 105-130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30073524

RESUMO

Chromatin immunoprecipitation coupled with high-throughput, next-generation DNA sequencing (ChIP-seq) has enabled researchers to establish the genome-wide patterns of chromatin modifications and binding of chromatin-associated proteins. Well-established protocols produce robust ChIP-seq data for many proteins by sequencing the DNA obtained following immunoprecipitation of fragmented chromatin using a wide range of specific antibodies. In general, the quality of these data mainly depends on the specificity and avidity of the antibody used. However, even using optimal antibodies, ChIP-seq can become more challenging when the protein associates with chromatin via protein-protein interactions rather than directly binding DNA. An example of such a protein is the alpha-thalassaemia mental retardation X-linked (ATRX) protein; a chromatin remodeler that associates with the histone chaperone DAXX, in the deposition of the replication-independent histone variant H3.3 and plays an important role in maintaining chromatin integrity. Inherited mutations of ATRX cause syndromal mental retardation (ATR-X Syndrome) whereas acquired mutations are associated with myelodysplasia, acute myeloid leukemia (ATMDS syndrome), and a range of solid tumors. Therefore, high quality ChIP-seq data have been needed to analyze the genome-wide distribution of ATRX, to advance our understanding of its normal role and to comprehend how mutations contribute to human disease. Here, we describe an optimized ChIP-seq protocol for ATRX which can also be used to produce high quality data sets for other challenging proteins which are indirectly associated with DNA and complement the ChIP-seq toolkit for genome-wide analyses of histone chaperon complexes and associated chromatin remodelers. Although not a focus of this chapter, we will also provide some insight for the analysis of the large dataset generated by ChIP-seq. Even though this protocol has been fully optimized for ATRX, it should also provide guidance for efficient ChIP-seq analysis, using the appropriate antibodies, for other proteins interacting indirectly with DNA.


Assuntos
Imunoprecipitação da Cromatina/métodos , Reagentes de Ligações Cruzadas/química , Proteína Nuclear Ligada ao X/metabolismo , Biblioteca Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sonicação
17.
Methods Protoc ; 1(3)2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31164571

RESUMO

The emergence in recent years of DNA editing technologies-Zinc finger nucleases (ZFNs), transcription activator-like effector (TALE) guided nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/Cas family enzymes, and Base-Editors-have greatly increased our ability to generate hundreds of edited cells carrying an array of alleles, including single-nucleotide substitutions. However, the infrequency of homology-dependent repair (HDR) in generating these substitutions in general requires the screening of large numbers of edited cells to isolate the sequence change of interest. Here we present a high-throughput method for the amplification and barcoding of edited loci in a 96-well plate format. After barcoding, plates are indexed as pools which permits multiplexed sequencing of hundreds of clones simultaneously. This protocol works at high success rate with more than 94% of clones successfully genotyped following analysis.

18.
Genome Res ; 27(10): 1730-1742, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28904015

RESUMO

In the era of genome-wide association studies (GWAS) and personalized medicine, predicting the impact of single nucleotide polymorphisms (SNPs) in regulatory elements is an important goal. Current approaches to determine the potential of regulatory SNPs depend on inadequate knowledge of cell-specific DNA binding motifs. Here, we present Sasquatch, a new computational approach that uses DNase footprint data to estimate and visualize the effects of noncoding variants on transcription factor binding. Sasquatch performs a comprehensive k-mer-based analysis of DNase footprints to determine any k-mer's potential for protein binding in a specific cell type and how this may be changed by sequence variants. Therefore, Sasquatch uses an unbiased approach, independent of known transcription factor binding sites and motifs. Sasquatch only requires a single DNase-seq data set per cell type, from any genotype, and produces consistent predictions from data generated by different experimental procedures and at different sequence depths. Here we demonstrate the effectiveness of Sasquatch using previously validated functional SNPs and benchmark its performance against existing approaches. Sasquatch is available as a versatile webtool incorporating publicly available data, including the human ENCODE collection. Thus, Sasquatch provides a powerful tool and repository for prioritizing likely regulatory SNPs in the noncoding genome.


Assuntos
Pegada de DNA/métodos , Desoxirribonucleases/química , Células Eritroides/metabolismo , Motivos de Nucleotídeos , Polimorfismo de Nucleotídeo Único , Elementos de Resposta , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Humanos , Valor Preditivo dos Testes
19.
Nat Commun ; 8(1): 424, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871148

RESUMO

ß-Thalassemia is one of the most common inherited anemias, with no effective cure for most patients. The pathophysiology reflects an imbalance between α- and ß-globin chains with an excess of free α-globin chains causing ineffective erythropoiesis and hemolysis. When α-thalassemia is co-inherited with ß-thalassemia, excess free α-globin chains are reduced significantly ameliorating the clinical severity. Here we demonstrate the use of CRISPR/Cas9 genome editing of primary human hematopoietic stem/progenitor (CD34+) cells to emulate a natural mutation, which deletes the MCS-R2 α-globin enhancer and causes α-thalassemia. When edited CD34+ cells are differentiated into erythroid cells, we observe the expected reduction in α-globin expression and a correction of the pathologic globin chain imbalance in cells from patients with ß-thalassemia. Xenograft assays show that a proportion of the edited CD34+ cells are long-term repopulating hematopoietic stem cells, demonstrating the potential of this approach for translation into a therapy for ß-thalassemia.ß-thalassemia is characterised by the presence of an excess of α-globin chains, which contribute to erythrocyte pathology. Here the authors use CRISP/Cas9 to reduce α-globin expression in hematopoietic precursors, and show effectiveness in xenograft assays in mice.


Assuntos
Elementos Facilitadores Genéticos/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , alfa-Globinas/genética , Talassemia beta/genética , Talassemia beta/terapia , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas , Células Cultivadas , Feminino , Técnicas de Silenciamento de Genes , Genoma Humano , Xenoenxertos , Humanos , Camundongos , Deleção de Sequência/genética , Análise de Célula Única
20.
Proc Natl Acad Sci U S A ; 114(36): E7526-E7535, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827334

RESUMO

The human genome contains ∼30,000 CpG islands (CGIs). While CGIs associated with promoters nearly always remain unmethylated, many of the ∼9,000 CGIs lying within gene bodies become methylated during development and differentiation. Both promoter and intragenic CGIs may also become abnormally methylated as a result of genome rearrangements and in malignancy. The epigenetic mechanisms by which some CGIs become methylated but others, in the same cell, remain unmethylated in these situations are poorly understood. Analyzing specific loci and using a genome-wide analysis, we show that transcription running across CGIs, associated with specific chromatin modifications, is required for DNA methyltransferase 3B (DNMT3B)-mediated DNA methylation of many naturally occurring intragenic CGIs. Importantly, we also show that a subgroup of intragenic CGIs is not sensitive to this process of transcription-mediated methylation and that this correlates with their individual intrinsic capacity to initiate transcription in vivo. We propose a general model of how transcription could act as a primary determinant of the patterns of CGI methylation in normal development and differentiation, and in human disease.


Assuntos
Diferenciação Celular/genética , Ilhas de CpG/genética , Metilação de DNA/genética , Transcrição Gênica/genética , Animais , Linhagem Celular , Epigênese Genética/genética , Genoma Humano/genética , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA