RESUMO
Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.
RESUMO
When pressed for time, outbreak investigators often use homogeneous mixing models to model infectious diseases in data-poor regions. But recent outbreaks such as the 2014 Ebola outbreak in West Africa have shown the limitations of this approach in an era of increasing urbanization and connectivity. Both outbreak detection and predictive modeling depend on realistic estimates of human and disease mobility, but these data are difficult to acquire in a timely manner. This is especially true when dealing with an emerging outbreak in an under-resourced nation. Weighted travel networks with realistic estimates for population flows are often proprietary, expensive, or nonexistent. Here we propose a method for rapidly generating a mobility model from open-source data. As an example, we use road and river network data, along with population estimates, to construct a realistic model of human movement between health zones in the Democratic Republic of the Congo (DRC). Using these mobility data, we then fit an epidemic model to real-world surveillance data from the recent Ebola outbreak in the Nord Kivu region of the DRC to illustrate a potential use of the generated mobility estimation. In addition to providing a way for rapid risk estimation, this approach brings together novel techniques to merge diverse GIS datasets that can then be used to address issues that pertain to public health and global health security.
Assuntos
Surtos de Doenças/prevenção & controle , Sistemas de Informação Geográfica , Doença pelo Vírus Ebola/epidemiologia , Vigilância da População , República Democrática do Congo/epidemiologia , Saúde Global , Humanos , Saúde PúblicaRESUMO
Background: This study explores how the Roma in Romania, the EU's most concentrated population, are faring in terms of a number of quality of life indicators, including poverty levels, healthcare, education, water, sanitation, and hygiene. It further explores the role of synthetic populations and modelling in identifying at-risk populations and delivering targeted aid. Methods: 135 surveys were conducted across five geographically diverse Romanian communities. Household participants were selected through a comprehensive random walk method. Analyses were conducted on all data using Pandas for Python. Combining land scan data, time-use survey analyses, interview data, and ArcGIS, the resulting synthetic population was analysed via classification and regression tree (CART) analysis to identify hot-spots of need, both ethnically and geographically. Results: These data indicate that the Roma in Romania face significant disparities in education, with Roma students less likely to progress beyond 8 th grade. In addition, the Roma population remains significantly disadvantaged with regard to safe and secure housing, poverty, and healthcare status, particularly in connection to diarrheal disease. In contrast, however, both Roma and non-Roma in rural areas face difficulties regarding full-time employment, sanitation, and water, sanitation, and hygiene infrastructure. In addition, the use of a synthetic population can generate information about 'hot spots' of need, based on geography, ethnicity, and type of aid required. Conclusions: These data demonstrate the challenges that remain to the Roma population in Romania, and also point to the myriad of ways in which all rural Romanians, regardless of ethnicity, are encountering hardship. This study highlights an approach that combines traditional survey data with more wide-reaching geographically based data and CART analysis to determine 'hot spot' areas of need in a given population. With the appropriate inputs, this tool can be extrapolated to any population in any country.