Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453546

RESUMO

Blood vessel-on-a-chip models aim at reproducing vascular functions. However, very few efficient methods have been designed to address the need for biological replicates in medium- to high-throughput screenings. Here, vessels-on-chip were designed in polydimethylsiloxane-glass chips using the viscous finger patterning technique which was adapted to create channels with various internal diameters inside a collagen solution and to simultaneously seed cells. This method was refined to create blood vessels composed of two concentric, distinct, and closely appositioned layers of human endothelial and perivascular cells arranged around a hollow lumen. These approaches allowed the formation of structurally correct blood vessels-on-chips which were constituted of either only endothelial cells or of both cell types in order to distinguish the vascular barrier reactivity to drugs in the presence or not of perivascular cells. The established vessels showed a tight vascular barrier, as assessed by immunostaining of the adherens junctions, and were reactive to the natural vasopermeant thrombin and to inflammatory cytokines. The presence of perivascular cells markedly increased the tightness of the vascular barrier and lowered its response to thrombin. The design allowed us to simultaneously challenge in real-time several tens of 3D-reconstituted, multicellular blood vessels in a standard multiwell plate format suitable for high-throughput drug screening.

2.
Front Microbiol ; 9: 2617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429842

RESUMO

With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.

3.
Front Microbiol ; 7: 777, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303372

RESUMO

Protein phosphatase 1 (PP1c) is one of the main phosphatases whose function is shaped by many regulators to confer a specific location and a selective function for this enzyme. Here, we report that eukaryotic initiation factor 2ß of Plasmodium falciparum (PfeIF2ß) is an interactor of PfPP1c. Sequence analysis of PfeIF2ß revealed a deletion of 111 amino acids when compared to its human counterpart and the presence of two potential binding motifs to PfPP1 ((29)FGEKKK(34), (103)KVAW(106)). As expected, we showed that PfeIF2ß binds PfeIF2γ and PfeIF5, confirming its canonical interaction with partners of the translation complex. Studies of the PfeIF2ß-PfPP1 interaction using wild-type, single and double mutated versions of PfeIF2ß revealed that both binding motifs are critical. We next showed that PfeIF2ß is able to induce Germinal Vesicle Break Down (GVBD) when expressed in Xenopus oocytes, an indicator of its capacity to regulate PP1. Only combined mutations of both binding motifs abolished the interaction with PP1 and the induction of GVBD. In P. falciparum, although the locus is accessible for genetic manipulation, PfeIF2ß seems to play an essential role in intraerythrocytic cycle as no viable knockout parasites were detectable. Interestingly, as for PfPP1, the subcellular fractionation of P. falciparum localized PfeIF2ß in cytoplasm and nuclear extracts, suggesting a potential effect on PfPP1 in both compartments and raising the question of a non-canonical function of PfeIf2ß in the nucleus. Hence, the role played by PfeIF2ß in blood stage parasites could occur at multiple levels involving the binding to proteins of the translational complex and to PfPP1.

4.
FEBS J ; 281(19): 4519-34, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132288

RESUMO

The regulation of Plasmodium falciparum protein phosphatase type 1 (PfPP1) activity remains to be deciphered. Data from homologous eukaryotic type 1 protein phosphatases (PP1) suggest that several protein regulators should be involved in this essential process. One such regulator, named PfI2 based on its primary sequence homology with eukaryotic inhibitor 2 (I2), was recently shown to be able to interact with PfPP1 and to inhibit its phosphatase activity, mainly through the canonical 'RVxF' binding motif. The details of the structural and functional characteristics of this interaction are investigated here. Using NMR spectroscopy, a second site of interaction is suggested to reside between residues D94 and T117 and contains the 'FxxR/KxR/K' binding motif present in other I2 proteins. This site seems to play in concert/synergy with the 'RVxF' motif to bind PP1, because only mutations in both motifs were able to abolish this interaction completely. However, regarding the structure/function relationship, mutation of either the 'RVxF' or 'FxxR/KxR/K' motif is more drastic, because each mutation prevents the capacity of PfI2 to trigger germinal vesicle breakdown in microinjected Xenopus oocytes. This indicates that the tight association of the PfI2 regulator to PP1, mediated by a two-site interaction, is necessary to exert its function. Based on these results, the use of a peptide derived from the 'FxxR/KxR/K' PfI2 motif was investigated for its potential effect on Plasmodium growth. This peptide, fused at its N-terminus to a penetrating sequence, was shown to accumulate specifically in infected erythrocytes and to have an antiplasmodial effect.


Assuntos
Antimaláricos/química , Plasmodium falciparum/enzimologia , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Eritrócitos/parasitologia , Humanos , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Xenopus laevis
5.
BMC Biol ; 11: 80, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23837822

RESUMO

BACKGROUND: It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. RESULTS: In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. CONCLUSIONS: Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteínas/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antimaláricos/uso terapêutico , Clonagem Molecular , Biologia Computacional , Fase G2/efeitos dos fármacos , Marcação de Genes , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Mitose/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/enzimologia , Parasitos/crescimento & desenvolvimento , Peptídeos/química , Peptídeos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Ligação Proteica/efeitos dos fármacos , Mapeamento de Interação de Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas/química , Proteínas de Protozoários/química , Técnicas do Sistema de Duplo-Híbrido , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA