Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 364: 107722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38943993

RESUMO

We present 3D electromagnetic simulations of the coupling of a 250 GHz beam to the sample in a 380 MHz DNP NMR spectrometer. To obtain accurate results for magic angle spinning (MAS) geometries, we first measured the complex dielectric constants of zirconia, sapphire, and the sample matrix material (DNP juice) from room temperature down to cryogenic temperatures and from 220 to 325 GHz with a VNA and up to 1 THz with a THz TDS system. Simulations of the coupling to the sample were carried out with the ANSYS HFSS code as a function of the rotor wall material (zirconia or sapphire), the rotor wall thickness, and the THz beam focusing (lens or no lens). For a zirconia rotor, the B1 field in the sample was found to be strongly dependent on the rotor wall thickness, which is attributed to the high refractive index of zirconia. The optimum thickness of the wall is likely due to a transmission maximum but is offset from the thickness predicted by a simple calculation for a flat slab of the wall material. The B1 value was found to be larger for a sapphire rotor than for a zirconia rotor for all cases studied. The results found in this work provide new insights into the coupling of THz radiation to the sample and should lead to improved designs of future DNP NMR instrumentation.

2.
IEEE Trans Terahertz Sci Technol ; 13(4): 354-361, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37409025

RESUMO

The reflectance (R) and transmittance (T) of Si and GaAs wafers irradiated by a 6 ns pulsed, 532 nm laser have been studied for s- and p-polarized 250 GHz radiation as a function of laser fluence and time. The measurements were carried out using precision timing of the R and T signals, allowing an accurate determination of the absorptance (A) where A=1-R-T. Both wafers had a maximum reflectance above 90% for a laser fluence ≥8 mJ/cm2. Both also showed an absorptance peak of ~50% lasting ~2 ns during the risetime of the laser pulse. Experimental results were compared with a stratified medium theory using the Vogel model for the carrier lifetime and the Drude model for permittivity. Modeling showed that the large absorptance at the early part of the rise of the laser pulse was due to the creation of a lossy, low carrier density layer. For Si, the measured R, T and A were in very good agreement with theory on both the nanosecond time scale and the microsecond scale. For GaAs, the agreement was very good on the nanosecond scale but only qualitatively correct on the microsecond scale. These results may be useful for planning applications of laser driven semiconductor switches.

3.
J Magn Reson ; 353: 107511, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385067

RESUMO

Dynamic nuclear polarization (DNP) improves the sensitivity of NMR spectroscopy by the transfer of electron polarization to nuclei via irradiation of electron-nuclear transitions with microwaves at the appropriate frequency. For fields > 5 T and using g ∼ 2 electrons as polarizing agents, this requires the availability of microwave sources operating at >140 GHz. Therefore, microwave sources for DNP have generally been continuous-wave (CW) gyrotrons, and more recently solid state, oscillators operating at a fixed frequency and power. This constraint has limited the DNP mechanisms which can be exploited, and stymied the development of new time domain mechanisms. We report here the incorporation of a microwave source enabling facile modulation of frequency, amplitude, and phase at 9 T (250 GHz microwave frequency), and we have used the source for magic-angle spinning (MAS) NMR experiments. The experiments include investigations of CW DNP mechanisms, the advantage of frequency-chirped irradiation, and a demonstration of an Overhauser enhancement of ∼25 with a recently reported water-soluble BDPA radical, highlighting the potential for affordable and compact microwave sources to achieve significant enhancement in aqueous samples, including biological macromolecules. With the development of suitable microwave amplifiers, it should permit exploration of multiple new avenues involving time domain experiments.

4.
IEEE Trans Electron Devices ; 70(6): 2643-2655, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250956

RESUMO

The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication-terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.

5.
J Infrared Millim Terahertz Waves ; 42(1): 29-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33574964

RESUMO

The phase stability of a 140GHz, 1kW pulsed gyro-amplifier system and the phase dependence on the cathode voltage were experimentally measured. To optimize the measurement precision, the amplifier was operated at 47 kV and 1 A, where the output power was ∼ 30W. The phase was determined to be stable both pulse-to-pulse and during each pulse, so far as the cathode voltage and electron beam current are constant. The phase variation with voltage was measured and found to be 130±30°/kV, in excellent agreement with simulations. The electron gun used in this device is non-adiabatic, resulting in a steep slope of the beam pitch factor with respect to cathode voltage. This was discovered to be the dominant factor in the phase dependence on voltage. The use of an adiabatic electron gun is predicted to yield a significantly smaller phase sensitivity to voltage, and thus a more phase-stable performance. To our knowledge, these are the first phase measurements reported for a gyro-amplifier operating at a frequency above W-band.

6.
IEEE Trans Electron Devices ; 67(1): 328-334, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32099264

RESUMO

We report the design and experimental demonstration of a frequency tunable terahertz gyrotron at 527 GHz built for an 800 MHz Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance (DNP-NMR) spectrometer. The gyrotron is designed at the second harmonic (ω = 2ω c) of the electron cyclotron frequency. It produces up to 9.3 W continuous microwave (CW) power at 527.2 GHz frequency using a diode type electron gun operating at V = 16.65 kV, Ib = 110 mA in a TE11,2,1 mode, corresponding to an efficiency of ~0.5%. The gyrotron is tunable within ~ 0.4 GHz by combining voltage and magnetic field tuning. The gyrotron has an internal mode converter that produces a Gaussian-like beam that couples to the HE11 mode of an internal 12 mm i.d. corrugated waveguide periscope assembly leading up to the output window. An external corrugated waveguide transmission line system is built including a corrugated taper from 12 mm to 16 mm i.d. waveguide followed by 3 m of the 16 mm i.d. waveguide The microwave beam profile is measured using a pyroelectric camera showing ~ 84% HE11 mode content.

7.
J Magn Reson ; 307: 106573, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31505305

RESUMO

We describe the design and construction of a modular, triple-resonance, fully balanced, DNP-MAS probe based on transmission line technology and its integration into a 500 MHz/330 GHz DNP-NMR spectrometer. A novel quantitative probe design and characterization strategy is developed and employed to achieve optimal sensitivity, RF homogeneity and excellent isolation between channels. The resulting three channel HCN probe has a modular design with each individual, swappable module being equipped with connectorized, transmission line ports. This strategy permits attachment of a mating connector that facilitates accurate impedance measurements at these ports and allows characterization and adjustment (e.g. for balancing or tuning/matching) of each component individually. The RF performance of the probe is excellent; for example, the 13C channel attains a Rabi frequency of 280 kHz for a 3.2 mm rotor. In addition, a frequency tunable 330 GHz gyrotron operating at the second harmonic of the electron cyclotron frequency was developed for DNP applications. Careful alignment of the corrugated waveguide led to minimal loss of the microwave power, and an enhancement factor ε = 180 was achieved for U-13C urea in the glassy matrix at 80 K. We demonstrated the operation of the system with acquisition of multidimensional spectra of cross-linked lysozyme crystals which are insoluble in glycerol-water mixtures used for DNP and samples of RNA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/instrumentação , Ciclotrons , Impedância Elétrica , Desenho de Equipamento , Indicadores e Reagentes , Micro-Ondas , Muramidase/química , RNA/química , Ureia/química
9.
Phys Rev Lett ; 122(1): 014801, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012710

RESUMO

We present the first demonstration of high-power, reversed-Cherenkov wakefield radiation by electron bunches passing through a metamaterial structure. The structure supports a fundamental transverse magnetic mode with a negative group velocity leading to reversed-Cherenkov radiation, which was clearly verified in the experiments. Single 45 nC electron bunches of 65 MeV traversing the structure generated up to 25 MW in 2 ns pulses at 11.4 GHz, in excellent agreement with theory. Two bunches of 85 nC with appropriate temporal spacing generated up to 80 MW by coherent wakefield superposition, the highest rf power that metamaterial structures ever experienced without damage. These results demonstrate the unique features of metamaterial structures that are very attractive for future high-gradient wakefield accelerators, including two-beam and collinear accelerators. Advantages include the high shunt impedance for high-power generation and high-gradient acceleration, the simple and rugged structure, and a large parameter space for optimization.

10.
Appl Phys Lett ; 114(16): 164102, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32127718

RESUMO

A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 µs, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230 mJ pulses. Irradiation of a single Si wafer by the laser produced 110 GHz RF pulses with a 9 ns width and >70% reflectance. Under the same conditions, a single GaAs wafer yielded 24 ns 110 GHz RF pulses with >78% reflectance. For both semiconductor materials, a higher value of reflectance was observed with increasing 110 GHz beam intensity. Using two active wafers, pulses of variable length down to 3 ns duration were created. The switch was tested at incident 110 GHz RF power levels up to 600 kW. A 1-D model is presented that agrees well with the experimentally observed temporal pulse shapes obtained with a single Si wafer. The LDSS has many potential uses in high power millimeter-wave research, including testing of high-gradient accelerator structures.

11.
Appl Phys Lett ; 111(23): 233504, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249833

RESUMO

We report the amplification of 250 GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8 GHz. The operational bandwidth of the amplifier can be tuned over 16 GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30 cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700 mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses.

12.
Artigo em Inglês | MEDLINE | ID: mdl-29033474

RESUMO

The design and experimental results of a 140 GHz gyro-amplifier that uses a dielectric-loaded, sever-less confocal waveguide are presented. The gyro-traveling wave amplifier uses the HE06 mode of a confocal geometry with power coupled in and out of the structure with Vlasov-type, quasi-optical couplers. Dielectric loading attached to the side of the confocal structure suppresses unwanted modes allowing zero-drive stable operation at 48 kV and 3A of beam current. The confocal gyro-amplifier demonstrated a peak circuit gain of 35 dB, a bandwidth of 1.2 GHz and a peak output power of 550 W at 140.0 GHz.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28890582

RESUMO

The linear and nonlinear theory of a gyroamplifier using a confocal waveguide is presented. A quasi-optical approach to describing the modes of a confocal waveguide is derived. Both the equations of motion and the mode excitation equation are derived in detail. The confocal waveguide circuit has the advantage of reducing mode competition but the lack of azimuthal symmetry presents challenges in calculating the gain. In the linear regime, the gain calculated using the exact form factor for the confocal waveguide agrees with an azimuthally averaged form factor. A beamlet code including velocity spread effects has been written to calculate the linear and nonlinear (saturated) gain. It has been successfully benchmarked against the MAGY code for azimuthally symmetric cases. For the confocal waveguide, the beamlet code shows that the saturated gain is reduced when compared with results obtained using an azimuthally averaged form factor. The beamlet code derived here extends the capabilities of nonlinear gyroamplifier theory to configurations that lack azimuthal symmetry.

14.
Artigo em Inglês | MEDLINE | ID: mdl-25067859

RESUMO

When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system-miter bends that have slightly angled or ellipsoidal mirrors-the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses.

15.
IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc ; 42(10): 3358-3364, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25821260

RESUMO

We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE11 mode, with <8% of the power in high-order modes.

16.
IEEE Microw Wirel Compon Lett ; 24(12): 842-844, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25821412

RESUMO

We present results for the successful fabrication of low-loss THz metallic waveguide components using direct machining with a CNC end mill. The approach uses a split-block machining process with the addition of an RF choke running parallel to the waveguide. The choke greatly reduces coupling to the parasitic mode of the parallel-plate waveguide produced by the split-block. This method has demonstrated loss as low as 0.2 dB/cm at 280 GHz for a copper WR-3 waveguide. It has also been used in the fabrication of 3 and 10 dB directional couplers in brass, demonstrating excellent agreement with design simulations from 240-260 GHz. The method may be adapted to structures with features on the order of 200 µm.

17.
Acc Chem Res ; 46(9): 1933-41, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23597038

RESUMO

During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = 1/2 species (13)C or (15)N. The difficulty is still greater when quadrupolar nuclei, such as (17)O or (27)Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of ∼4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.


Assuntos
Espectroscopia de Ressonância Magnética , Compostos Alílicos/química , Óxidos N-Cíclicos/química , Propanóis/química , Compostos de Tritil/química
18.
J Infrared Millim Terahertz Waves ; 33(7): 695-714, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23162673

RESUMO

Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE(11) mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE(11) mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE(11) mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

19.
J Magn Reson ; 223: 170-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22975246

RESUMO

We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H, (13)C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S=1/2 electron spins, 100 kHz on (1)H, and 50 kHz on (13)C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (≥3 T).


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Computadores , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Heterocíclicos , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética/instrumentação , Micro-Ondas , Compostos Organometálicos , Temperatura
20.
J Magn Reson ; 224: 1-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23000974

RESUMO

We describe the design and implementation of the instrumentation required to perform DNP-NMR at higher field strengths than previously demonstrated, and report the first magic-angle spinning (MAS) DNP-NMR experiments performed at (1)H/e(-) frequencies of 700 MHz/460 GHz. The extension of DNP-NMR to 16.4 T has required the development of probe technology, cryogenics, gyrotrons, and microwave transmission lines. The probe contains a 460 GHz microwave channel, with corrugated waveguide, tapers, and miter-bends that couple microwave power to the sample. Experimental efficiency is increased by a cryogenic exchange system for 3.2 mm rotors within the 89 mm bore. Sample temperatures ≤85 K, resulting in improved DNP enhancements, are achieved by a novel heat exchanger design, stainless steel and brass vacuum jacketed transfer lines, and a bronze probe dewar. In addition, the heat exchanger is preceded with a nitrogen drying and generation system in series with a pre-cooling refrigerator. This reduces liquid nitrogen usage from >700 l per day to <200 l per day and allows for continuous (>7 days) cryogenic spinning without detrimental frost or ice formation. Initial enhancements, ε=-40, and a strong microwave power dependence suggests the possibility for considerable improvement. Finally, two-dimensional spectra of a model system demonstrate that the higher field provides excellent resolution, even in a glassy, cryoprotecting matrix.


Assuntos
Espectroscopia de Ressonância Magnética/instrumentação , Refrigeração/instrumentação , Manejo de Espécimes/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA