Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 250: 121045, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159537

RESUMO

Lactate is among the top-ten-biobased products. It occurs naturally as D- or L-isomer and as a racemic mixture (DL-lactate). Generally, lactate with a high optical purity is more valuable. In searching for suitable renewable feedstocks for lactate production, unutilized organic waste streams are increasingly coming into focus. Here, we investigated acid whey, which is a lactose-rich byproduct of yogurt production, that represents a considerable environmental footprint for the dairy industry. We investigated the steering of the lactate-isomer composition in a continuous and open culture system (HRT = 0.6 d) at different pH values (pH 5.0 vs. pH 6.5) and process temperatures (38°C to 50°C). The process startup was achieved by autoinoculation. At a pH of 5.0 and a temperature of 47°C-50°C, exclusive D-lactate production occurred because of the dominance of Lactobacillus spp. (> 95% of relative abundance). The highest volumetric D-lactate production rate of 722 ± 94.6 mmol C L-1 d-1 (0.90 ± 0.12 g L-1 h-1), yielding 0.93 ± 0.15 mmol C mmol C-1, was achieved at a pH of 5.0 and a temperature of 44°C (n = 18). At a pH of 6.5 and a temperature of 44°C, we found a mixture of DL-lactate (average D-to-L-lactate production rate ratio of 1.69 ± 0.90), which correlated with a high abundance of Streptococcus spp. and Enterococcus spp. However, exclusive L-lactate production could not be achieved. Our results show that for the continuous conversion of lactose-rich dairy waste streams, the pH was a critical process parameter to control the yield of lactate isomers by influencing the composition of the microbiota. In contrast, temperature adjustments allowed the improvement of bioprocess kinetics.


Assuntos
Ácido Láctico , Microbiota , Fermentação , Temperatura , Lactose , Concentração de Íons de Hidrogênio
2.
Front Microbiol ; 11: 594524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584563

RESUMO

Bulk production of medium-chain carboxylates (MCCs) with 6-12 carbon atoms is of great interest to biotechnology. Open cultures (e.g., reactor microbiomes) have been utilized to generate MCCs in bioreactors. When in-line MCC extraction and prevention of product inhibition is required, the bioreactors have been operated at mildly acidic pH (5.0-5.5). However, model chain-elongating bacteria grow optimally at neutral pH values. Here, we isolated a chain-elongating bacterium (strain 7D4C2) that grows at mildly acidic pH. We studied its metabolism and compared its whole genome and the reverse ß-oxidation (rBOX) genes to other bacteria. Strain 7D4C2 produces lactate, acetate, n-butyrate, n-caproate, biomass, and H2/CO2 from hexoses. With only fructose as substrate (pH 5.5), the maximum n-caproate specificity (i.e., products per other carboxylates produced) was 60.9 ± 1.5%. However, this was considerably higher at 83.1 ± 0.44% when both fructose and n-butyrate (electron acceptor) were combined as a substrate. A comparison of 7D4C2 cultures with fructose and n-butyrate with an increasing pH value from 4.5 to 9.0 showed a decreasing n-caproate specificity from ∼92% at mildly acidic pH (pH 4.5-5.0) to ∼24% at alkaline pH (pH 9.0). Moreover, when carboxylates were extracted from the broth (undissociated n-caproic acid was ∼0.3 mM), the n-caproate selectivity (i.e., product per substrate fed) was 42.6 ± 19.0% higher compared to 7D4C2 cultures without extraction. Based on the 16S rRNA gene sequence, strain 7D4C2 is most closely related to the isolates Caproicibacter fermentans (99.5%) and Caproiciproducens galactitolivorans (94.7%), which are chain-elongating bacteria that are also capable of lactate production. Whole-genome analyses indicate that strain 7D4C2, C. fermentans, and C. galactitolivorans belong to the same genus of Caproiciproducens. Their rBOX genes are conserved and located next to each other, forming a gene cluster, which is different than for other chain-elongating bacteria such as Megasphaera spp. In conclusion, Caproiciproducens spp., comprising strain 7D4C2, C. fermentans, C. galactitolivorans, and several unclassified strains, are chain-elongating bacteria that encode a highly conserved rBOX gene cluster. Caproiciproducens sp. 7D4C2 (DSM 110548) was studied here to understand n-caproate production better at mildly acidic pH within microbiomes and has the additional potential as a pure-culture production strain to convert sugars into n-caproate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA