RESUMO
The human gut microbiome can be impacted by a range of environmental and lifestyle factors including diet, antibiotics, physical fitness and acute and chronic stressors. There is also evidence to suggest that specific compositional and/or functional features of the gut microbiome are mediators of aspects of health and performance including disease susceptibility, cognitive and physical states and the immune response. Therefore, understanding microbe-to-microbe and nutrient-to-microbe interactions in the gut and how they interact with host biology (eg, via the gut-brain axis) could enable better design of interventions aimed at modulating the gut microbiome to improve the health and performance of the military. Accordingly, this review summarises a thematic session hosted at the 6th International Conference on Soldier Physical Performance which provided an overview of military-relevant research related to the gut microbiome. It articulates a timely opportunity to leverage this rapidly advancing area to improve personnel health and military performance.
RESUMO
CONTEXT: Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE: To characterise temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS: Ten healthy adults (9M/1F, mean ± SD: age: 30 ± 10 y; BMI: 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours of this period (i.e., 0800-0800 h). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 2200-0700 h. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 h from 1200 h to 0800 h the following day to quantify gene expression. RESULTS: Plasma insulin displayed diurnal rhythmicity peaking at 1804 h. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name - Acrophase; GLUT4 - 1440 h; PPARGC1A -1613 h; HK2 - 1824 h) and lipid metabolism (FABP3 - 1237 h; PDK4 - 0530 h; CPT1B - 1258 h) displayed 24 h rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (0019 h), NEFA (0456 h), glycerol (0432 h), triglyceride (2314 h), urea (0046 h), CTX (0507 h) and cortisol concentrations (2250 h) also all displayed diurnal rhythmicity. CONCLUSION: Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
RESUMO
Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (-1.91 ± 0.99 kilograms) almost entirely due to fat loss (-1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (-1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (-0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (-0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (-0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health.
Assuntos
Jejum , Redução de Peso , Adulto , Composição Corporal , Peso Corporal , Restrição Calórica , Ingestão de Energia , Metabolismo Energético , Humanos , ObesidadeRESUMO
Constant routine and forced desynchrony protocols typically remove the effects of behavioral/environmental cues to examine endogenous circadian rhythms, yet this may not reflect rhythms of appetite regulation in the real world. It is therefore important to understand these rhythms within the same subjects under controlled diurnal conditions of light, sleep, and feeding. Ten healthy adults (9 M/1 F, means ±SD: age, 30 ± 10 yr; body mass index, 24.1 ± 2.7 kg·m-2) rested supine in the laboratory for 37 h. All data were collected during the final 24 h of this period (i.e., 0800-0800 h). Participants were fed hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 2200 to 0700 h. Hourly blood samples were collected throughout the 24-h period. Dim light melatonin onset occurred at 2318 ± 46 min. A diurnal rhythm in mean plasma unacylated ghrelin concentration was identified (P = 0.04), with the acrophase occurring shortly after waking (0819), falling to a nadir in the evening with a relative amplitude of 9%. Plasma leptin concentration also exhibited a diurnal rhythm (P < 0.01), with the acrophase occurring shortly after lights-out (0032 h) and the lowest concentrations at midday. The amplitude for this rhythm was 25%. Diurnal rhythms were established in all dimensions of appetite except for sweet preference (P = 0.29), with both hunger (2103 h) and prospective food consumption (1955 h) reaching their peak in the evening before falling to their nadir shortly after waking. Under controlled diurnal conditions, simultaneous measurement of leptin, unacylated ghrelin, and subjective appetite over a 24-h period revealed rhythmicity in appetite regulation in lean, healthy humans.NEW & NOTEWORTHY Simultaneous assessment of subjective appetite, unacylated ghrelin, and leptin was carried out over a continuous 37-h protocol for the first time under conditions of controlled light, sleep, and feeding in healthy, lean adults. Rhythms were observed in unacylated ghrelin, leptin, and components of subjective appetite, such as hunger, prospective consumption, and fullness. Concurrent measurement of rhythms in these variables is important to fully understand the temporal relationships between components of appetite as well as the influence of diurnal factors such as sleep, light, and feeding.
Assuntos
Ritmo Circadiano , Leptina , Adulto , Apetite , Grelina , Humanos , Estudos Prospectivos , Adulto JovemRESUMO
AIM: Fibroblast growth factor 21 (FGF21) has recently been implicated in thirst in rodent models. The mechanisms for this are currently uncertain, and it is unclear whether hydration status can alter FGF21 concentrations, potentially providing an additional mechanism by which hypohydration induces thirst. The aim of this study is therefore to understand whether hydration status can alter circulating FGF21 in humans. METHODS: Using a heat tent and fluid restriction, we induced hypohydration (1.9% body mass loss) in 16 healthy participants (n = 8 men), and compared their glycaemic regulation to a rehydration protocol (heat tent and fluid replacement) in a randomised crossover design. RESULTS: After the hypohydration procedure, urine specific gravity, urine and serum osmolality, and plasma copeptin (as a marker for arginine vasopressin) increased as expected, with no change after the rehydration protocol. In the fasted state, the median paired difference in plasma FGF21 concentrations from the rehydrated to hypohydrated trial arm was -37 (interquartile range -125, 10) pgâmL-1(P = 0.278), with average concentrations being 458 ± 462 pgâmL-1 after hypohydration and 467 ± 438 pgâmL-1 after rehydration; mean difference -9 ± 173 pgâmL-1. CONCLUSION: To our knowledge, these are the first causal data in humans investigating hydration and FGF21, demonstrating that an acute bout of hypohydration does not impact fasted plasma FGF21 concentrations. These data may suggest that whilst previous research has found FGF21 administration can induce thirst and drinking behaviours, a physiological state implicated in increased thirst (hypohydration) does not appear to impact plasma FGF21 concentrations in humans.
Assuntos
Desidratação/sangue , Fatores de Crescimento de Fibroblastos/sangue , Adulto , Estudos Cross-Over , Desidratação/fisiopatologia , Desidratação/terapia , Comportamento de Ingestão de Líquido , Jejum/sangue , Feminino , Hidratação , Humanos , Masculino , Sede , Adulto JovemRESUMO
PURPOSE: To examine the influence of post-exercise protein feeding upon the adaptive response to endurance exercise training. METHODS: In a randomised parallel group design, 25 healthy men and women completed 6 weeks of endurance exercise training by running on a treadmill for 30-60 min at 70-75% maximal oxygen uptake (VO2max) 4 times/week. Participants ingested 1.6 g per kilogram of body mass (g kg BM-1) of carbohydrate (CHO) or an isocaloric carbohydrate-protein solution (CHO-P; 0.8 g carbohydrate kg BM-1 + 0.8 g protein kg BM-1) immediately and 1 h post-exercise. Expired gas, blood and muscle biopsy samples were taken at baseline and follow-up. RESULTS: Exercise training improved VO2max in both groups (p ≤ 0.001), but this increment was not different between groups either in absolute terms or relative to body mass (0.2 ± 0.2 L min-1 and 3.0 ± 2 mL kg-1 min-1, respectively). No change occurred in plasma albumin concentration from baseline to follow-up with CHO-P (4.18 ± 0.18 to 4.23 ± 0.17 g dL-1) or CHO (4.17 ± 0.17 to 4.12 ± 0.22 g dL-1; interaction: p > 0.05). Mechanistic target of rapamycin (mTOR) gene expression was up-regulated in CHO-P (+ 46%; p = 0.025) relative to CHO (+ 4%) following exercise training. CONCLUSION: Post-exercise protein supplementation up-regulated the expression of mTOR in skeletal muscle over 6 weeks of endurance exercise training. However, the magnitude of improvement in VO2max was similar between groups.
Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Proteínas Alimentares/farmacologia , Treino Aeróbico/métodos , Adolescente , Adulto , Carboidratos da Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Consumo de Oxigênio , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
OBJECTIVE: This study investigated the effect of 3 weeks of high-sugar ("Sweet") versus low-sugar ("Plain") breakfast on energy balance, metabolic health, and appetite. METHODS: A total of 29 healthy adults (22 women) completed this randomized crossover study. Participants had pre- and postintervention appetite, health, and body mass outcomes measured, and they recorded diet, appetite (visual analogue scales), and physical activity for 8 days during each intervention. Interventions were 3 weeks of isoenergetic Sweet (30% by weight added sugar; average 32 g of sugar) versus Plain (no added sugar; average 8 g of sugar) porridge-based breakfasts. RESULTS: Pre- to postintervention changes in body mass were similar between Plain (Δ 0.1 kg; 95% CI: -0.3 to 0.5 kg) and Sweet (Δ 0.2 kg; 95% CI: -0.2 to 0.5 kg), as were pre- to postintervention changes for biomarkers of health (all P ≥ 0.101) and psychological appetite (all P ≥ 0.152). Energy, fat, and protein intake was not statistically different between conditions. Total carbohydrate intake was higher during Sweet (287 ± 82 g/d vs. 256 ± 73 g/d; P = 0.009), driven more by higher sugar intake at breakfast (116 ± 46 g/d vs. 88 ± 38 g/d; P < 0.001) than post-breakfast sugar intake (Sweet 84 ± 42 g/d vs. Plain 80 ± 37 g/d; P = 0.552). Participants reported reduced sweet desire immediately after Sweet but not Plain breakfasts (trial × time P < 0.001). CONCLUSIONS: Energy balance, health markers, and appetite did not respond differently to 3 weeks of high- or low-sugar breakfasts.
RESUMO
PURPOSE: Intermittent energy restriction commonly refers to ad libitum energy intake punctuated with 24 h periods of severe energy restriction. This can improve markers of metabolic health but the effects on bone metabolism are unknown. This study assessed how 24 h severe energy restriction and subsequent refeeding affected markers of bone turnover. METHODS: In a randomised order, 16 lean men and women completed 2, 48 h trials over 3 days. On day 1, participants consumed a 24 h diet providing 100% [EB: 9.27 (1.43) MJ] or 25% [ER: 2.33 (0.34) MJ] of estimated energy requirements. On day 2, participants consumed a standardised breakfast (08:00), followed by an ad libitum lunch (12:00) and dinner (19:30). Participants then fasted overnight, returning on day 3. Plasma concentrations of C-terminal telopeptide of type I collagen (CTX), procollagen type 1 N-terminal propeptide (P1NP) and parathyroid hormone (PTH) were assessed as indices of bone metabolism after an overnight fast on days 1-3, and for 4 h after breakfast on day 2. RESULTS: There were no differences between trials in fasting concentrations of CTX, P1NP or PTH on days 1-3 (P > 0.512). During both trials, consuming breakfast reduced CTX between 1 and 4 h (P < 0.001) and PTH between 1 and 2 h (P < 0.05), but did not affect P1NP (P = 0.773) Postprandial responses for CTX (P = 0.157), P1NP (P = 0.148) and PTH (P = 0.575) were not different between trials. Ad libitum energy intake on day 2 was greater on ER [12.62 (2.46) MJ] than EB [11.91 (2.49) MJ]. CONCLUSIONS: Twenty-four hour severe energy restriction does not affect markers of bone metabolism.
Assuntos
Ingestão de Energia , Período Pós-Prandial , Desjejum , Metabolismo Energético , Feminino , Humanos , Masculino , Refeições , Hormônio ParatireóideoRESUMO
Obesity remains a major public health concern and intermittent fasting is a popular strategy for weight loss, which may present independent health benefits. However, the number of diet books advising how fasting can be incorporated into our daily lives is several orders of magnitude greater than the number of trials examining whether fasting should be encouraged at all. This review will consider the state of current understanding regarding various forms of intermittent fasting (e.g. 5:2, time-restricted feeding and alternate-day fasting). The efficacy of these temporally defined approaches appears broadly equivalent to that of standard daily energy restriction, although many of these models of intermittent fasting do not involve fed-fasted cycles every other 24 h sleep-wake cycle and/or permit some limited energy intake outside of prescribed feeding times. Accordingly, the intervention period therefore may not regularly alternate, may not span all or even most of any given day, and may not even involve absolute fasting. This is important because potentially advantageous physiological mechanisms may only be initiated if a post-absorptive state is sustained by uninterrupted fasting for a more prolonged duration than applied in many trials. Indeed, promising effects on fat mass and insulin sensitivity have been reported when fasting duration is routinely extended beyond sixteen consecutive hours. Further progress will require such models to be tested with appropriate controls to isolate whether any possible health effects of intermittent fasting are primarily attributable to regularly protracted post-absorptive periods, or simply to the net negative energy balance indirectly elicited by any form of dietary restriction.
Assuntos
Peso Corporal/fisiologia , Jejum , Refeições/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Saúde , Humanos , Redução de Peso/fisiologiaRESUMO
BACKGROUND: Few studies have investigated the effect of hydration status on appetite for food in healthy adults. Prior work suggests hydration status does not alter appetite or energy intake, with mixed findings regarding appetite hormone secretion. However, an extensive investigation into both the psychological and physiological appetitive responses to hydration status has never been conducted. OBJECTIVE: To investigate the effect of hydration status on multiple facets of appetite. DESIGN: After 3 days pre-trial standardization, a range of appetite tasks were conducted when hypohydrated (HYPO) and euhydrated (EUHY) in 16 healthy participants (8 men). Hydration status was manipulated via dehydration in a heat tent for 60â¯min and subsequent fluid restriction (HYPO) or replacement (EUHY). The next day, a food reward computer task was completed followed by an ad libitum pasta meal. Pre- and post-prandial visual analogue scales assessing hunger, fullness, and flavour desires (sweet, salty, savoury and fatty) were additionally completed. Blood samples were taken the previous day before the hydration interventions in a euhydrated state, and in the fasted and post-prandial state during HYPO and EUHY. RESULTS: HYPO induced -1.9⯱â¯1.2% body mass change, compared to -0.2⯱â¯0.6% , with accompanying changes in markers of hypohydration which were not seen during EUHY. A higher desire for foods was associated with a higher water content but the association was weaker in EUHY compared to HYPO, (ß= -0.33â¯mm/g of food water content, p < 0.001) in the food reward task. Visual analogue scales showed similar hunger and fullness between interventions, but during HYPO there was consistently higher thirst (average range in difference 27-32â¯mm across all time points) and lower fasted desire for salt (-23, 95% CI -10, -35â¯mm). Ad libitum energy intake (HYPO 1953⯱â¯742â¯kJ, EUHY 2027⯱â¯926â¯kJ; pâ¯=â¯0.542) and post-prandial ghrelin concentrations (HYPO 180⯱â¯65 pg mL-1, EUHY 188⯱â¯71 pg mL-1; pâ¯=â¯0.736) were similar by hydration status. CONCLUSIONS: An acute manipulation to hydration status altered desire for salt and foods of differing water contents, but did not influence energy intake at an ad libitum pasta meal. Further research should investigate whether these appetites would alter food choice.
Assuntos
Ingestão de Energia/fisiologia , Preferências Alimentares/fisiologia , Grelina/sangue , Estado de Hidratação do Organismo/fisiologia , Cloreto de Sódio na Dieta , Sede/fisiologia , Adulto , Estudos Cross-Over , Desidratação/fisiopatologia , Feminino , Humanos , Fome/fisiologia , Masculino , Período Pós-Prandial/fisiologia , Saciação/fisiologia , Adulto JovemRESUMO
The aim of this study was to investigate the acute effect of hydration status on glycemic regulation in healthy adults and explore underlying mechanisms. In this randomized crossover trial, 16 healthy adults (8 men, 8 women) underwent an oral glucose tolerance test (OGTT) when hypohydrated and rehydrated after 4 days of pretrial standardization. One day before OGTT, participants were dehydrated for 1 h in a heat tent with subsequent fluid restriction (HYPO) or replacement (RE). The following day, an OGTT was performed with metabolic rate measurements and pre- and post-OGTT muscle biopsies. Peripheral quantitative computer tomography thigh scans were taken before and after intervention to infer changes in cell volume. HYPO (but not RE) induced 1.9% (SD 1.2) body mass loss, 2.9% (SD 2.7) cell volume reduction, and increased urinary hydration markers, serum osmolality, and plasma copeptin concentration (all P ≤ 0.007). Fasted serum glucose [HYPO 5.10 mmol/l (SD 0.42), RE 5.02 mmol/l (SD 0.40); P = 0.327] and insulin [HYPO 27.1 pmol/l (SD 9.7), RE 27.6 pmol/l (SD 9.2); P = 0.809] concentrations were similar between HYPO and RE. Hydration status did not alter the serum glucose ( P = 0.627) or insulin ( P = 0.200) responses during the OGTT. Muscle water content was lower before OGTT after HYPO compared with RE [761 g/kg wet wt (SD 13) vs. 772 g/kg wet wt (SD 18) RE] but similar after OGTT [HYPO 779 g/kg wet wt (SD 15) vs. RE 780 g/kg wet wt (SD 20); time P = 0.011; trial × time P = 0.055]. Resting energy expenditure was similar between hydration states (stable between -1.21 and 5.94 kJ·kg-1·day-1; trial P = 0.904). Overall, despite acute mild hypohydration increasing plasma copeptin concentrations and decreasing fasted cell volume and muscle water, we found no effect on glycemic regulation. NEW & NOTEWORTHY We demonstrated for the first time that an acute bout of hypohydration does not impact blood sugar control in healthy adults. Physiological responses to mild hypohydration (<2% body mass loss) caused an elevation in copeptin concentrations similar to that seen in those with diabetes as well as reducing cell volume by ~3%; both of these changes had been hypothesized to cause a higher blood sugar response.
Assuntos
Glicemia/metabolismo , Desidratação/sangue , Músculo Esquelético/metabolismo , Estado de Hidratação do Organismo , Adulto , Biomarcadores/sangue , Composição Corporal , Estudos Cross-Over , Desidratação/fisiopatologia , Desidratação/terapia , Metabolismo Energético , Feminino , Hidratação , Teste de Tolerância a Glucose , Voluntários Saudáveis , Humanos , Insulina/sangue , Masculino , Músculo Esquelético/diagnóstico por imagem , Projetos Piloto , Soluções para Reidratação/administração & dosagem , Fatores de Tempo , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.
Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Redes e Vias Metabólicas , Músculo Esquelético/fisiologia , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Metabolismo dos LipídeosRESUMO
BACKGROUND: Prior studies have shown that intermittent fasting is capable of producing improvements in body weight and fasted health markers. However, the extent to which intermittent fasting incurs compensatory changes in the components of energy balance and its impact on postprandial metabolism are yet to be ascertained. METHODS: A total of 30-36 lean participants and 30-36 overweight/obese participants will be recruited to provide two separate study groups who will undergo the same protocol. Following an initial assessment of basic anthropometry and key health markers, measurements of habitual energy intake (weighed food and fluid intake) and physical activity energy expenditure (combined heart rate and accelerometry) will be obtained over 4 weeks under conditions of energy balance. Participants will then be randomly allocated to one of three experimental conditions for 20 days, namely (1) daily calorie restriction (reduce habitual daily energy intake by 25%), (2) intermittent fasting with calorie restriction (alternate between 24-hour periods of fasting and feeding to 150% of habitual daily energy intake), (3) intermittent fasting without calorie restriction (alternate between 24-hour periods of fasting and feeding to 200% of habitual daily energy intake). In addition to continued monitoring of energy intake and physical activity during the intervention, participants will report for laboratory-based assessments of various metabolic parameters both before and after the intervention. Specifically, fasting and postprandial measurements of resting metabolic rate, substrate oxidation, appetite, food preference, and plasma concentrations of key metabolites and hormones will be made, in addition to subcutaneous abdominal adipose tissue biopsies in the fasted state and an assessment of body composition via dual-energy x-ray absorptiometry. DISCUSSION: Comparing observed changes in these measures across the three intervention arms in each group will establish the impact of intermittent fasting on postprandial metabolism and the components of energy balance in both lean and overweight/obese populations. Furthermore, this will be benchmarked against current nutritional interventions for weight management and the relative contributions of negative energy balance and fasting-dependent mechanisms in inducing any observed effects will be elucidated. TRIAL REGISTRATION: Trial retrospectively registered at clinicaltrials.gov under reference number NCT02498002 (version: IMF-02, date: July 6, 2015).
Assuntos
Restrição Calórica , Metabolismo Energético , Jejum , Obesidade/dietoterapia , Redução de Peso , Adolescente , Adulto , Idoso , Composição Corporal , Restrição Calórica/efeitos adversos , Inglaterra , Jejum/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Obesidade/diagnóstico , Obesidade/fisiopatologia , Período Pós-Prandial , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
Circadian clocks play an important role in lipid homeostasis, with impact on various metabolic diseases. Due to the central role of skeletal muscle in whole-body metabolism, we aimed at studying muscle lipid profiles in a temporal manner. Moreover, it has not been shown whether lipid oscillations in peripheral tissues are driven by diurnal cycles of rest-activity and food intake or are able to persist in vitro in a cell-autonomous manner. To address this, we investigated lipid profiles over 24 h in human skeletal muscle in vivo and in primary human myotubes cultured in vitro. Glycerolipids, glycerophospholipids, and sphingolipids exhibited diurnal oscillations, suggesting a widespread circadian impact on muscle lipid metabolism. Notably, peak levels of lipid accumulation were in phase coherence with core clock gene expression in vivo and in vitro. The percentage of oscillating lipid metabolites was comparable between muscle tissue and cultured myotubes, and temporal lipid profiles correlated with transcript profiles of genes implicated in their biosynthesis. Lipids enriched in the outer leaflet of the plasma membrane oscillated in a highly coordinated manner in vivo and in vitro. Lipid metabolite oscillations were strongly attenuated upon siRNA-mediated clock disruption in human primary myotubes. Taken together, our data suggest an essential role for endogenous cell-autonomous human skeletal muscle oscillators in regulating lipid metabolism independent of external synchronizers, such as physical activity or food intake.