Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(5): 053111, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864809

RESUMO

This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

2.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

3.
Orig Life Evol Biosph ; 42(2-3): 179-86, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22660983

RESUMO

Naphthalene is an interesting candidate to study in the framework of organic delivery to planetary surfaces as well as in the origin of life. Additionally, naphthalene is of environmental interest, because of its chronic and acute effects on living systems, such as humans and animals (e.g. moths). Naphthalene has been well studied in both fields. In this paper we give an overview of radiolytic studies of naphthalene in the presence of both liquid water and water ice. From our review it appears that OH radicals are formed both in liquid water and in interstellar ices and that these radicals play a considerable role in the degradation of naphthalene. However, it also appears that upon irradiation of naphthalene in liquid water, hydrogen peroxide, a species that accelerates naphthalene degradation, is formed. Based on this review we suggest that the role of hydrogen peroxide in interstellar ices should be further investigated.


Assuntos
Naftalenos/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA