Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 9221-9231, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38488287

RESUMO

We investigate the direction-dependent switching current in a flux-tunable four-terminal Josephson junction defined in an InAs/Al two-dimensional heterostructure. The device exhibits the Josephson diode effect with switching currents that depend on the sign of the bias current. The superconducting diode efficiency, reaching a maximum of |η| ≈ 34%, is widely tunable─both in amplitude and sign─as a function of magnetic fluxes and gate voltages. Our observations are supported by a circuit model of three parallel Josephson junctions with nonsinusoidal current-phase relation. With respect to conventional Josephson interferometers, phase-tunable multiterminal Josephson junctions enable large diode efficiencies in structurally symmetric devices, where local magnetic fluxes generated on the chip break both time-reversal and spatial symmetries. Our work presents an approach for developing Josephson diodes with wide-range tunability that do not rely on exotic materials.

2.
Nano Lett ; 24(3): 866-872, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38205713

RESUMO

A critical bottleneck for the training of large neural networks (NNs) is communication with off-chip memory. A promising mitigation effort consists of integrating crossbar arrays of analogue memories in the Back-End-Of-Line, to store the NN parameters and efficiently perform the required synaptic operations. The "Tiki-Taka" algorithm was developed to facilitate NN training in the presence of device nonidealities. However, so far, a resistive switching device exhibiting all the fundamental Tiki-Taka requirements, which are many programmable states, a centered symmetry point, and low programming noise, was not yet demonstrated. Here, a complementary metal-oxide semiconductor (CMOS)-compatible resistive random access memory (RRAM), showing more than 30 programmable states with low noise and a symmetry point with only 5% skew from the center, is presented for the first time. These results enable generalization of Tiki-Taka training from small fully connected networks to larger long-/short-term-memory types of NN.

3.
Nat Commun ; 14(1): 6798, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884490

RESUMO

Light-matter coupling allows control and engineering of complex quantum states. Here we investigate a hybrid superconducting-semiconducting Josephson junction subject to microwave irradiation by means of tunnelling spectroscopy of the Andreev bound state spectrum and measurements of the current-phase relation. For increasing microwave power, discrete levels in the tunnelling conductance develop into a series of equally spaced replicas, while the current-phase relation changes amplitude and skewness, and develops dips. Quantitative analysis of our results indicates that conductance replicas originate from photon assisted tunnelling of quasiparticles into Andreev bound states through the tunnelling barrier. Despite strong qualitative similarities with proposed signatures of Floquet-Andreev states, our study rules out this scenario. The distortion of the current-phase relation is explained by the interaction of Andreev bound states with microwave photons, including a non-equilibrium Andreev bound state occupation. The techniques outlined here establish a baseline to study light-matter coupling in hybrid nanostructures and distinguish photon assisted tunnelling from Floquet-Andreev states in mesoscopic devices.

4.
Nat Commun ; 14(1): 6784, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880228

RESUMO

In hybrid Josephson junctions with three or more superconducting terminals coupled to a semiconducting region, Andreev bound states may form unconventional energy band structures, or Andreev matter, which are engineered by controlling superconducting phase differences. Here we report tunnelling spectroscopy measurements of three-terminal Josephson junctions realised in an InAs/Al heterostructure. The three terminals are connected to form two loops, enabling independent control over two phase differences and access to a synthetic Andreev band structure in the two-dimensional phase space. Our results demonstrate a phase-controlled Andreev molecule, originating from two discrete Andreev levels that spatially overlap and hybridise. Signatures of hybridisation are observed in the form of avoided crossings in the spectrum and band structure anisotropies in the phase space, all explained by a numerical model. Future extensions of this work could focus on addressing spin-resolved energy levels, ground state fermion parity transitions and Weyl bands in multiterminal geometries.

5.
ACS Nano ; 17(18): 18139-18147, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37694539

RESUMO

We perform supercurrent and tunneling spectroscopy measurements on gate-tunable InAs/Al Josephson junctions (JJs) in an in-plane magnetic field and report on phase shifts in the current-phase relation measured with respect to an absolute phase reference. The impact of orbital effects is investigated by studying multiple devices with different superconducting lead sizes. At low fields, we observe gate-dependent phase shifts of up to φ0 = 0.5π, which are consistent with a Zeeman field coupling to highly transmissive Andreev bound states via Rashba spin-orbit interaction. A distinct phase shift emerges at larger fields, concomitant with a switching current minimum and the closing and reopening of the superconducting gap. These signatures of an induced phase transition, which might resemble a topological transition, scale with the superconducting lead size, demonstrating the crucial role of orbital effects. Our results elucidate the interplay of Zeeman, spin-orbit, and orbital effects in InAs/Al JJs, giving improved understanding of phase transitions in hybrid JJs and their applications in quantum computing and superconducting electronics.

6.
Nano Lett ; 23(16): 7532-7538, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552598

RESUMO

We perform switching current measurements of planar Josephson junctions (JJs) coupled by a common superconducting electrode with independent control over the two superconducting phase differences. We observe an anomalous phase shift in the current-phase relation of a JJ as a function of gate voltage or phase difference in the second JJ. This demonstrates the nonlocal Josephson effect, and the implementation of a φ0-junction which is tunable both electrostatically and magnetically. The anomalous phase shift is larger for shorter distances between the JJs and vanishes for distances much longer than the superconducting coherence length. Results are consistent with the hybridization of Andreev bound states, leading to the formation of an Andreev molecule. Our devices constitute a realization of a tunable superconducting phase source and could enable new coupling schemes for hybrid quantum devices.

7.
Nano Lett ; 22(17): 7049-7056, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35998346

RESUMO

PbTe is a semiconductor with promising properties for topological quantum computing applications. Here, we characterize electron quantum dots in PbTe nanowires selectively grown on InP. Charge stability diagrams at zero magnetic field reveal large even-odd spacing between Coulomb blockade peaks, charging energies below 140 µeV and Kondo peaks in odd Coulomb diamonds. We attribute the large even-odd spacing to the large dielectric constant and small effective electron mass of PbTe. By studying the Zeeman-induced level and Kondo splitting in finite magnetic fields, we extract the electron g-factor as a function of magnetic field direction. We find the g-factor tensor to be highly anisotropic with principal g-factors ranging from 0.9 to 22.4 and to depend on the electronic configuration of the devices. These results indicate strong Rashba spin-orbit interaction in our PbTe quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA