Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466346

RESUMO

High molecular weight poly (p-phenylene-terephthalamide) (h-PPTA) was blended with the commercial PPTA in concentrated sulfuric acid to improve the spinnability of the polymer solutions and the mechanical properties of the as-spun fibers. h-PPTA in the solution has an influence on the temperature of the formation of liquid crystalline phenomenon. The temperature range with the existence of the liquid crystalline phase increases upon the contents of h-PPTA in the solution, and the extended temperature window is helpful for the preparation of PPTA fibers by the dry-jet wet-spinning technology. The long-chains of h-PPTA enhance the inter-macromolecular interactions and induce the orientation of short-chains for PPTA along the fiber axis under the shear stress in the spinneret and the stretching stress at the air gap. These effects also increase the maximum drawing ratio in the spinning process and improve the mechanical properties of the obtained fibers. The crystallinity and crystal orientation of the fibers are investigated by X-ray diffraction, and results from sonic velocity test further confirm ordering state of the macromolecular chains. The fibril morphologies of the fibers are also studied by a scanning electric microscope.

2.
Polymers (Basel) ; 10(8)2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30960745

RESUMO

In this work, the layer-by-layer self-assembly technology was used to modify aramid fibers (AFs) to improve the interfacial adhesion to epoxy matrix. By virtue of the facile layer-by-layer self-assembly technique, poly(l-3,4-Dihydroxyphenylalanine) (l-PDOPA) was successfully coated on the surface of AFs, leading to the formation of AFs with controllable layers (nL-AF). Then, a hydroxyl functionalized silane coupling agent (KH550) was grafted on the surface of l-PDOPA coated AFs. The properties such as microstructure and surface morphology of AFs before and after modification were characterized by FTIR, XPS and FE-SEM. The results confirmed that l-PDOPA and KH550 were successfully introduced into the surface of AFs by electrostatic adsorption. The interfacial properties of AFs reinforced epoxy resin composites before and after coating were characterized by interfacial shear strength (IFSS), interlaminar shear strength (ILSS) and FE-SEM, and the results show that the interfacial adhesion properties of the modified fiber/epoxy resin composites were greatly improved.

3.
Polymers (Basel) ; 9(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970823

RESUMO

To improve interfacial adhesion between aramid fibers and vinyl epoxy resins, a series of hydroxyl and ethylene-functional aromatic polyamides ((ClPPTA)m-R') with different chain segments were successfully synthesized via a one-pot low-temperature polycondensation. The hydroxyl and ethylene-functional aromatic polyamides were characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state 13C CP/MAS nuclear magnetic resonance spectroscopy (13C CP/MAS NMR), thermal gravimetric analysis (TGA), and wide-angle X-ray diffraction (WXRD). The contact angle of the hydroxyl and ethylene-functional aromatic polyamides films were measured. The hydroxyl and ethylene-functional aromatic polyamides were used as the sizing agents for aramid fiber/vinyl epoxy composites. The surface chemical composition and morphology of the unsized and sized fibers were identified using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The interfacial adhesion between aramid fibers and vinyl epoxy composites was investigated by the micro-debond tests. The results showed that the interfacial shear strength between the sized aramid fibers and vinyl epoxy composites was greatly improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA