Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 167: 115605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801901

RESUMO

The second most common cancer among men is prostate cancer, which is also the fifth leading reason for male cancer deaths worldwide. Bone metastases are the main factor affecting the prognosis of prostate cancer. Consequently, antitumor and anti-prostate cancer-induced bone destruction medicines are urgently needed. We previously discovered that aminooxyacetic acid hemihydrochloride (AOAA) suppressed bone resorption and osteoclast growth by decreasing adenosine triphosphate (ATP) production and limiting oxidative phosphorylation (OXPHOS). Here, we evaluated the impacts of AOAA on prostate cancer RM-1 cells in vitro. It's found that AOAA significantly inhibited cell proliferation, migration, and invasiveness, decreased ATP levels, increased ROS, halted the cell cycle phase, and triggered apoptosis. AOAA also decreased mitochondrial membrane potential and the ability to uptake glucose, suggesting that the antitumor effects of AOAA were expressed through the inhibition of OXPHOS and glycolysis. Furthermore, we assessed the effects of AOAA in vivo using a prostate cancer-induced bone osteolysis mice model. AOAA also delayed tumor growth and bone destruction in vivo. On the whole, our findings imply that AOAA may potentially have therapeutic effects on prostate cancer and prostate cancer-induced osteolysis.


Assuntos
Osteólise , Neoplasias da Próstata , Camundongos , Animais , Masculino , Humanos , Ácido Amino-Oxiacético/farmacologia , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Neoplasias da Próstata/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral
2.
Front Pharmacol ; 13: 980678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249744

RESUMO

Osteoclasts undergo active metabolic reprogramming to acquire the energy needed during differentiation and bone resorption. Compared with immature osteoclasts, mature osteoclasts comprise higher levels of electron transport chain enzymes and more metabolically active mitochondria. Of all energy metabolism pathways, oxidative phosphorylation is considered to be the most efficient in supplying energy to osteoclasts. We found that the malate-aspartate shuttle inhibitor aminooxyacetic acid hemihydrochloride inhibits osteoclastogenesis and bone resorption by inhibiting exchange of reducing equivalents between the cytosol and the mitochondrial matrix and attenuating mitochondrial oxidative phosphorylation in vitro. The weakening of the oxidative phosphorylation pathway resulted in reduced mitochondrial function and inadequate energy supply along with reduced reactive oxygen species production. Furthermore, treatment with aminooxyacetic acid hemihydrochloride helped recover bone loss in ovariectomized mice. Our findings highlight the potential of interfering with the osteoclast intrinsic energy metabolism pathway as a treatment for osteoclast-mediated osteolytic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA