Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0289659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540657

RESUMO

Erythropalum scandens Bl. is a woody vegetable with high nitrogen demand that inhabits southern China. Ammonium and nitrate are the two main forms of inorganic nitrogen that plants directly absorb. A pot experiment was performed to determine the growth, physiological responses, and preferences of 12-month-old E. scandens seedlings for ammonium and nitrate. Aboveground and underground growth indexes, biomass, physiological and biochemical indexes (chlorophyll [Chl], soluble sugar, soluble protein and free proline contents), and substrate pH and nitrogen contents were determined under different nitrate and ammonium ratios (0 NO3-: 100 NH4+, 25 NO3-: 75 NH4+, 50 NO3-: 50 NH4+, 75 NO3-: 25 NH4+, and 100 NO3-: 0 NH4+), and the control (0 NO3-: 0 NH4+). The results showed that ammonium and nitrate improved the growth and physiological status of E. scandens seedlings in most of the treatments compared to the control. The aboveground growth status and biomass accumulation of E. scandens seedlings were significantly better under the 0 NO3-: 100 NH4+ treatment during fertilization compared with all other treatments. However, the growth status of the underground parts was not significantly different among treatments. Significant differences in osmoregulator content, except for soluble sugars, and Chl content were observed. Soluble sugars and soluble proteins were highest under the 0 NO3-: 100 NH4+ treatment at the end of fertilization (day 175). However, free proline accumulated during fertilization and the increase in NO3- indicated that excessive use of NO3- had a negative effect on the E. scandens seedlings. The order of accumulating nitrogen content was leaves > roots > stems. The highest N accumulation occurred in the aboveground parts under the 0 NO3-: 100 NH4+ treatment, whereas the highest N accumulation occurred in the underground parts under the 50 NO3-: 50 NH4+ treatment. Substrate pH increased at the end of fertilization (day 175) compared with the middle stage (day 75), while total nitrogen, ammonium, and nitrate were highly significantly different among the treatments. Total nitrogen and NH4+ content were the highest under the 0 NO3-: 100 NH4+ treatment, while NO3- content was the highest under the 100 NO3-: 0 NH4+ treatment. In conclusion, 12-month-old E. scandens seedlings grew best, and had better physiological conditions in NH4+ than NO3-. The 0 NO3-:100 NH4+ treatment (ammonium chloride 3.82 g/plant) resulted in the best growth and physiological conditions. Most of the growth and physiological indexes were inhibited with the increase in nitrate.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Clorofila/metabolismo , Plântula , Nitrogênio/metabolismo , Prolina/metabolismo , Açúcares/metabolismo , Raízes de Plantas/metabolismo
2.
Ecotoxicol Environ Saf ; 241: 113748, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696965

RESUMO

Forest ecosystems play an important role in environmental protection and maintaining ecological balance. Understanding the physiological mechanisms of tree species response to aluminum (Al) toxic is crucial to reveal the main causes of plantation decline in acid rain area. As an important afforestation tree species in tropical and subtropical areas, Eucalyptus has high economic value and plays crucial ecological roles. However, continuous fertilization and acid precipitation can exacerbate soil acidification and increase soil active Al, which has a significant negative impact on Eucalyptus growth. Hence, species and genotypes with high Al resistance are required to solve the problem of Al toxicity of acidic soils for sustainable forest production. In this study, E. urophylla was better adapted to Al stress than E. grandis or E. tereticornis; its high Al resistance was attributed to greater antioxidant enzyme activity and non-enzymatic antioxidant content, and a lower degree of membrane lipid peroxidation than E. grandis or E. tereticornis. The differences in adaptability among the three pure species were attributed to their distinct habitats. Eucalyptus urophylla × E. grandis inherited the outstanding adaptability to Al stress from its maternal species (E. urophylla), indicating that Al tolerance is highly heritable and can be selected in Eucalyptus breeding. Our results indicated that the response of Eucalyptus to Al stress may fluctuate according to the time under stress, and might be related to dynamic changes in ROS elimination and accumulation.


Assuntos
Eucalyptus , Alumínio/toxicidade , Antioxidantes , Ecossistema , Eucalyptus/genética , Estresse Oxidativo , Melhoramento Vegetal , Solo , Árvores
3.
Plant Physiol Biochem ; 144: 118-126, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31563092

RESUMO

As nitrogen deposition increases, acid rain is gradually shifting from sulfuric acid rain (SAR) to nitric acid rain (NAR). Acid rain can severely affect plant growth, damage ecosystems, and reduce biodiversity. Thus, a shift in acid rain type presents another challenge to the conservation of endangered plant species. We investigated the effect of three acid rain types (SAR, mixed acid rain [MAR], and NAR) and pH on the growth of an endangered Chinese endemic tree, Horsfieldia hainanensis Merr., using simulated rain in a greenhouse environment. Over nine months, growth indices, chlorophyll content, antioxidant enzyme activity, malondialdehyde content, and chlorophyll fluorescence parameters were investigated for treated and control saplings. The results indicated that at a pH of 5.6, H. hainanensis could adapt to SAR and MAR, but NAR inhibited below-ground growth. At a pH of 2.5 and 4.0, SAR inhibited stem and leaf biomass accumulation, whereas NAR inhibited root biomass accumulation and altered root morphology. MAR had intermediary effects between those of SAR and NAR. Adverse effects on leaf physiology were reduced as the rain type shifted from SAR to NAR; however, roots were increasingly adversely affected. Our results suggest that conservation efforts for H. hainanensis should shift from an above-ground to a below-ground focus as acid rain transitions toward NAR.


Assuntos
Chuva Ácida/toxicidade , Myristicaceae/fisiologia , Ácido Nítrico/toxicidade , Ácidos Sulfúricos/toxicidade , Árvores/fisiologia , China , Ecossistema , Concentração de Íons de Hidrogênio , Myristicaceae/efeitos dos fármacos , Árvores/efeitos dos fármacos
4.
PLoS One ; 13(1): e0190900, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29324770

RESUMO

Under acidic conditions, aluminum (Al) toxicity is an important factor limiting plant productivity; however, the application of phosphorus (P) might alleviate the toxic effects of Al. In this study, seedlings of two vegetatively propagated Eucalyptus clones, E. grandis × E. urophylla 'G9' and E. grandis × E. urophylla 'DH32-29'were subjected to six treatments (two levels of Al stress and three levels of P). Under excessive Al stress, root Al content was higher, whereas shoot and leaf Al contents were lower with P application than those without P application. Further, Al accumulation was higher in the roots, but lower in the shoots and leaves of G9 than in those of DH32-29. The secretion of organic acids was higher under Al stress than under no Al stress. Further, under Al stress, the roots of G9 secreted more organic acids than those of DH32-29. With an increase in P supply, Al-induced secretion of organic acids from roots decreased. Under Al stress, some enzymes, including PEPC, CS, and IDH, played important roles in organic acid biosynthesis and degradation. Thus, our results indicate that P can reduce Al toxicity via the fixation of elemental Al in roots and restriction of its transport to stems and leaves, although P application cannot promote the secretion of organic acid anions. Further, the higher Al-resistance of G9 might be attributed to the higher Al accumulation in and organic acid anion secretion from roots and the lower levels of Al in leaves.


Assuntos
Alumínio/toxicidade , Eucalyptus/efeitos dos fármacos , Eucalyptus/metabolismo , Fósforo/farmacologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Substâncias Protetoras/farmacologia , Cloreto de Alumínio , Compostos de Alumínio/farmacologia , Biomassa , Cloretos/farmacologia , Enzimas/metabolismo , Eucalyptus/genética , Fosfatos/administração & dosagem , Fosfatos/farmacologia , Fósforo/administração & dosagem , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Compostos de Potássio/administração & dosagem , Compostos de Potássio/farmacologia , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA