Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 17(9): e0275102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166411

RESUMO

Prions are small petrels that are abundant around the Southern Ocean. Here we use mitochondrial DNA (COI and cytochrome b) and nuclear reduced representation sequencing (ddRADseq) to examine the relationships within and between fairy (Pachyptila turtur) and fulmar (P. crassirostris) prions from across their distributions. We found that neither species was recovered as monophyletic, and that at least three species were represented. Furthermore, we detected several genetic lineages that are also morphologically distinct occurring in near sympatry at two locations (Snares Islands and Chatham Islands). The factors that have driven diversification in the fairy/fulmar prion complex are unclear but may include philopatry, differences in foraging distribution during breeding, differences in non-breeding distributions and breeding habitat characteristics. The observed distribution of genetic variation in the fairy/fulmar prion complex is consistent with population expansion from ice-free Last Glacial Maximum refugia into previously glaciated areas.


Assuntos
Citocromos b , Príons , Animais , Aves/genética , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , Genômica , Filogenia , Príons/genética
3.
Nat Commun ; 13(1): 3912, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853876

RESUMO

Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.


Assuntos
Spheniscidae , Animais , Evolução Biológica , Fósseis , Genoma , Genômica , Filogenia , Spheniscidae/genética
4.
Mol Genet Genomics ; 297(1): 183-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34921614

RESUMO

Interspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin's prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray's prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray's prion that originated through a colonisation event from St Paul. We show that macgillivrayi's medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray's prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


Assuntos
Bico/anatomia & histologia , Aves , Evolução Molecular , Animais , Regiões Antárticas , Oceano Atlântico , Aves/anatomia & histologia , Aves/classificação , Aves/genética , Fluxo Gênico , Variação Genética , Hibridização Genética , Oceano Índico , Ilhas do Oceano Índico , Fenótipo , Filogenia
6.
Proc Biol Sci ; 287(1938): 20202318, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33171079

RESUMO

Living true seals (phocids) are the most widely dispersed semi-aquatic marine mammals, and comprise geographically separate northern (phocine) and southern (monachine) groups. Both are thought to have evolved in the North Atlantic, with only two monachine lineages-elephant seals and lobodontins-subsequently crossing the equator. The third and most basal monachine tribe, the monk seals, have hitherto been interpreted as exclusively northern and (sub)tropical throughout their entire history. Here, we describe a new species of extinct monk seal from the Pliocene of New Zealand, the first of its kind from the Southern Hemisphere, based on one of the best-preserved and richest samples of seal fossils worldwide. This unanticipated discovery reveals that all three monachine tribes once coexisted south of the equator, and forces a profound revision of their evolutionary history: rather than primarily diversifying in the North Atlantic, monachines largely evolved in the Southern Hemisphere, and from this southern cradle later reinvaded the north. Our results suggest that true seals crossed the equator over eight times in their history. Overall, they more than double the age of the north-south dichotomy characterizing living true seals and confirms a surprisingly recent major change in southern phocid diversity.


Assuntos
Evolução Biológica , Focas Verdadeiras , Animais , Caniformia , Fósseis , Nova Zelândia , Filogenia
7.
Proc Biol Sci ; 287(1932): 20201497, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32781949

RESUMO

New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36-3.06 Ma) Pliocene deposits in New Zealand. Bayesian and parsimony analyses place Eudyptes atatu sp. nov. as the sister species to all extant and recently extinct members of the crested penguin genus Eudyptes. The new species has a markedly more slender upper beak and mandible compared with other Eudyptes penguins. Our combined evidence approach reveals that deep bills evolved in both crested and stiff-tailed penguins (Pygoscelis) during the Pliocene. That deep bills arose so late in the greater than 60 million year evolutionary history of penguins suggests that dietary shifts may have occurred as wind-driven Pliocene upwelling radically restructured southern ocean ecosystems. Ancestral area reconstructions using BioGeoBEARS identify New Zealand as the most likely ancestral area for total-group penguins, crown penguins and crested penguins. Our analyses provide a timeframe for recruitment of crown penguins into the New Zealand avifauna, indicating this process began in the late Neogene and was completed via multiple waves of colonizing lineages.


Assuntos
Evolução Biológica , Spheniscidae/fisiologia , Animais , Teorema de Bayes , Ecossistema , Fósseis , Nova Zelândia , Filogenia
9.
Proc Natl Acad Sci U S A ; 116(52): 26690-26696, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843914

RESUMO

Climate shifts are key drivers of ecosystem change. Despite the critical importance of Antarctica and the Southern Ocean for global climate, the extent of climate-driven ecological change in this region remains controversial. In particular, the biological effects of changing sea ice conditions are poorly understood. We hypothesize that rapid postglacial reductions in sea ice drove biological shifts across multiple widespread Southern Ocean species. We test for demographic shifts driven by climate events over recent millennia by analyzing population genomic datasets spanning 3 penguin genera (Eudyptes, Pygoscelis, and Aptenodytes). Demographic analyses for multiple species (macaroni/royal, eastern rockhopper, Adélie, gentoo, king, and emperor) currently inhabiting southern coastlines affected by heavy sea ice conditions during the Last Glacial Maximum (LGM) yielded genetic signatures of near-simultaneous population expansions associated with postglacial warming. Populations of the ice-adapted emperor penguin are inferred to have expanded slightly earlier than those of species requiring ice-free terrain. These concerted high-latitude expansion events contrast with relatively stable or declining demographic histories inferred for 4 penguin species (northern rockhopper, western rockhopper, Fiordland crested, and Snares crested) that apparently persisted throughout the LGM in ice-free habitats. Limited genetic structure detected in all ice-affected species across the vast Southern Ocean may reflect both rapid postglacial colonization of subantarctic and Antarctic shores, in addition to recent genetic exchange among populations. Together, these analyses highlight dramatic, ecosystem-wide responses to past Southern Ocean climate change and suggest potential for further shifts as warming continues.

10.
Gigascience ; 8(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531675

RESUMO

BACKGROUND: Penguins (Sphenisciformes) are a remarkable order of flightless wing-propelled diving seabirds distributed widely across the southern hemisphere. They share a volant common ancestor with Procellariiformes close to the Cretaceous-Paleogene boundary (66 million years ago) and subsequently lost the ability to fly but enhanced their diving capabilities. With ∼20 species among 6 genera, penguins range from the tropical Galápagos Islands to the oceanic temperate forests of New Zealand, the rocky coastlines of the sub-Antarctic islands, and the sea ice around Antarctica. To inhabit such diverse and extreme environments, penguins evolved many physiological and morphological adaptations. However, they are also highly sensitive to climate change. Therefore, penguins provide an exciting target system for understanding the evolutionary processes of speciation, adaptation, and demography. Genomic data are an emerging resource for addressing questions about such processes. RESULTS: Here we present a novel dataset of 19 high-coverage genomes that, together with 2 previously published genomes, encompass all extant penguin species. We also present a well-supported phylogeny to clarify the relationships among penguins. In contrast to recent studies, our results demonstrate that the genus Aptenodytes is basal and sister to all other extant penguin genera, providing intriguing new insights into the adaptation of penguins to Antarctica. As such, our dataset provides a novel resource for understanding the evolutionary history of penguins as a clade, as well as the fine-scale relationships of individual penguin lineages. Against this background, we introduce a major consortium of international scientists dedicated to studying these genomes. Moreover, we highlight emerging issues regarding ensuring legal and respectful indigenous consultation, particularly for genomic data originating from New Zealand Taonga species. CONCLUSIONS: We believe that our dataset and project will be important for understanding evolution, increasing cultural heritage and guiding the conservation of this iconic southern hemisphere species assemblage.


Assuntos
Genoma , Spheniscidae/genética , Animais , Evolução Molecular , Filogenia
11.
Mol Biol Evol ; 36(4): 784-797, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30722030

RESUMO

The emergence of islands has been linked to spectacular radiations of diverse organisms. Although penguins spend much of their lives at sea, they rely on land for nesting, and a high proportion of extant species are endemic to geologically young islands. Islands may thus have been crucial to the evolutionary diversification of penguins. We test this hypothesis using a fossil-calibrated phylogeny of mitochondrial genomes (mitogenomes) from all extant and recently extinct penguin taxa. Our temporal analysis demonstrates that numerous recent island-endemic penguin taxa diverged following the formation of their islands during the Plio-Pleistocene, including the Galápagos (Galápagos Islands), northern rockhopper (Gough Island), erect-crested (Antipodes Islands), Snares crested (Snares) and royal (Macquarie Island) penguins. Our analysis also reveals two new recently extinct island-endemic penguin taxa from New Zealand's Chatham Islands: Eudyptes warhami sp. nov. and a dwarf subspecies of the yellow-eyed penguin, Megadyptes antipodes richdalei ssp. nov. Eudyptes warhami diverged from the Antipodes Islands erect-crested penguin between 1.1 and 2.5 Ma, shortly after the emergence of the Chatham Islands (∼3 Ma). This new finding of recently evolved taxa on this young archipelago provides further evidence that the radiation of penguins over the last 5 Ma has been linked to island emergence. Mitogenomic analyses of all penguin species, and the discovery of two new extinct penguin taxa, highlight the importance of island formation in the diversification of penguins, as well as the extent to which anthropogenic extinctions have affected island-endemic taxa across the Southern Hemisphere's isolated archipelagos.


Assuntos
Especiação Genética , Genoma Mitocondrial , Ilhas , Spheniscidae/genética , Animais , Fósseis , Nova Zelândia , Filogeografia
12.
Mol Phylogenet Evol ; 131: 72-79, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367976

RESUMO

Human impacts have substantially reduced avian biodiversity in many parts of the world, particularly on isolated islands of the Pacific Ocean. The New Zealand archipelago, including its five subantarctic island groups, holds breeding grounds for a third of the world's penguin species, including several representatives of the diverse crested penguin genus Eudyptes. While this species-rich genus has been little studied genetically, recent population estimates indicate that several Eudyptes taxa are experiencing demographic declines. Although crested penguins are currently limited to southern regions of the New Zealand archipelago, prehistoric fossil and archaeological deposits suggest a wider distribution during prehistoric times, with breeding ranges perhaps extending to the North Island. Here, we analyse ancient, historic and modern DNA sequences to explore two hypotheses regarding the recent history of Eudyptes in New Zealand, testing for (1) human-driven extinction of Eudyptes lineages; and (2) reduced genetic diversity in surviving lineages. From 83 prehistoric bone samples, each tentatively identified as 'Eudyptes spp.', we genetically identified six prehistoric penguin taxa from mainland New Zealand, including one previously undescribed genetic lineage. Moreover, our Bayesian coalescent analyses indicated that, while the range of Fiordland crested penguin (E. pachyrhynchus) may have contracted markedly over the last millennium, genetic DNA diversity within this lineage has remained relatively constant. This result contrasts with human-driven biodiversity reductions previously detected in several New Zealand coastal vertebrate taxa.


Assuntos
DNA Antigo/análise , Variação Genética , Filogenia , Spheniscidae/genética , Animais , Teorema de Bayes , Biodiversidade , Complexo IV da Cadeia de Transporte de Elétrons/genética , Fósseis , Haplótipos/genética , Humanos , Nova Zelândia , Oceano Pacífico , Dinâmica Populacional , Spheniscidae/classificação , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 115(30): 7771-7776, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987016

RESUMO

New Zealand's geographic isolation, lack of native terrestrial mammals, and Gondwanan origins make it an ideal location to study evolutionary processes. However, since the archipelago was first settled by humans 750 y ago, its unique biodiversity has been under pressure, and today an estimated 49% of the terrestrial avifauna is extinct. Current efforts to conserve the remaining fauna rely on a better understanding of the composition of past ecosystems, as well as the causes and timing of past extinctions. The exact temporal and spatial dynamics of New Zealand's extinct fauna, however, can be difficult to interpret, as only a small proportion of animals are preserved as morphologically identifiable fossils. Here, we conduct a large-scale genetic survey of subfossil bone assemblages to elucidate the impact of humans on the environment in New Zealand. By genetically identifying more than 5,000 nondiagnostic bone fragments from archaeological and paleontological sites, we reconstruct a rich faunal record of 110 species of birds, fish, reptiles, amphibians, and marine mammals. We report evidence of five whale species rarely reported from New Zealand archaeological middens and characterize extinct lineages of leiopelmatid frog (Leiopelma sp.) and kakapo (Strigops habroptilus) haplotypes lost from the gene pool. Taken together, this molecular audit of New Zealand's subfossil record not only contributes to our understanding of past biodiversity and precontact Maori subsistence practices but also provides a more nuanced snapshot of anthropogenic impacts on native fauna after first human arrival.


Assuntos
Biodiversidade , Osso e Ossos , DNA/genética , Fósseis , Pool Gênico , Animais , DNA/química , DNA/isolamento & purificação , Nova Zelândia
14.
PLoS One ; 13(6): e0197766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949581

RESUMO

Unresolved taxonomy of threatened species is problematic for conservation as the field relies on species being distinct taxonomic units. Differences in breeding habitat and results from a preliminary molecular analysis indicated that the New Zealand population of the South Georgian Diving Petrel (Pelecanoides georgicus) was a distinct, yet undescribed, species. We measured 11 biometric characters and scored eight plumage characters in 143 live birds and 64 study skins originating from most populations of P. georgicus, to assess their taxonomic relationships. We analysed differences with principal component analyses (PCA), factorial ANOVAs, and Kruskal-Wallis rank sum tests. Results show that individuals from New Zealand differ significantly from P. georgicus from all other populations as following: 1) longer wings, 2) longer outer tail feathers, 3) deeper bills, 4) longer heads, 5) longer tarsi, 6) limited collar extent, 7) greater extent of contrasting scapulars, 8) larger contrasting markings on the secondaries, 9) paler ear coverts, 10) paler collars, and 11) paler flanks. Furthermore, we used a species delimitation test with quantitative phenotypic criteria; results reveal that the New Zealand population of P. georgicus indeed merits species status. We hereby name this new species Pelecanoides whenuahouensis sp. nov. Due to severe reductions in its range and the very low number of remaining birds (~150 individuals limited to a single breeding colony on Codfish Island/Whenua Hou) the species warrants listing as 'Critically Endangered'. An abstract in the Maori language/Te Reo Maori can be found in S1 File.


Assuntos
Aves/classificação , Espécies em Perigo de Extinção , Especiação Genética , Animais , Aves/genética , Classificação , Ecossistema , Plumas , Nova Zelândia , Fenótipo
15.
Sci Rep ; 8(1): 235, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321543

RESUMO

A new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia. It also underscores the significant decline in morphological diversity that has taken place in the highly distinctive, semi-terrestrial bat family Mystacinidae since the Miocene. This bat was relatively large, with an estimated body mass of ~40 g, and its dentition suggests it had an omnivorous diet. Its striking dental autapomorphies, including development of a large hypocone, signal a shift of diet compared with other mystacinids, and may provide evidence of an adaptive radiation in feeding strategy in this group of noctilionoid bats.


Assuntos
Biodiversidade , Quirópteros/anatomia & histologia , Fósseis , Animais , Teorema de Bayes , Evolução Biológica , Quirópteros/classificação , Quirópteros/genética , Ecologia , Nova Zelândia , Fenótipo , Filogenia
16.
Nat Commun ; 8(1): 1927, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233963

RESUMO

One of the notable features of penguin evolution is the occurrence of very large species in the early Cenozoic, whose body size greatly exceeded that of the largest extant penguins. Here we describe a new giant species from the late Paleocene of New Zealand that documents the very early evolution of large body size in penguins. Kumimanu biceae, n. gen. et sp. is larger than all other fossil penguins that have substantial skeletal portions preserved. Several plesiomorphic features place the new species outside a clade including all post-Paleocene giant penguins. It is phylogenetically separated from giant Eocene and Oligocene penguin species by various smaller taxa, which indicates multiple origins of giant size in penguin evolution. That a penguin rivaling the largest previously known species existed in the Paleocene suggests that gigantism in penguins arose shortly after these birds became flightless divers. Our study therefore strengthens previous suggestions that the absence of very large penguins today is likely due to the Oligo-Miocene radiation of marine mammals.


Assuntos
Fósseis , Spheniscidae/anatomia & histologia , Spheniscidae/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Nova Zelândia , Filogenia
18.
Mol Phylogenet Evol ; 115: 197-209, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28803756

RESUMO

New Zealand's endemic King Shag (Leucocarbo carunculatus) has occupied only a narrow portion of the northeastern South Island for at least the past 240years. However, pre-human Holocene fossil and archaeological remains have suggested a far more widespread distribution of the three Leucocarbo species (King, Otago, Foveaux) on mainland New Zealand at the time of Polynesian settlement in the late 13th Century CE. We use modern and ancient DNA, and morphometric and osteological analyses, of modern King Shags and Holocene fossil Leucocarbo remains to assess the pre-human distribution and taxonomic status of the King Shag on mainland New Zealand, and the resultant conservation implications. Our analyses show that the King Shag was formerly widespread around southern coasts of the North Island and the northern parts of the South Island but experienced population and lineage extinctions, and range contraction, probably after Polynesian arrival. This history parallels range contractions of other New Zealand seabirds. Conservation management of the King Shag should take into account this species narrow distribution and probable reduced genetic diversity. Moreover, combined genetic, morphometric and osteological analyses of prehistoric material from mainland New Zealand suggest that the now extinct northern New Zealand Leucocarbo populations comprised a unique lineage. Although these distinctive populations were previously assigned to the King Shag (based on morphological similarities and geographic proximity to modern Leucocarbo populations), we herein describe them as a new species, the Kohatu Shag (Leucocarbo septentrionalis). The extinction of this species further highlights the dramatic impacts Polynesians and introduced predators had on New Zealand's coastal and marine biodiversity. The prehistoric presence of at least four species of Leucocarbo shag on mainland NZ further highlights its status as a biodiversity hotspot for Phalacrocoracidae.


Assuntos
Aves/classificação , Animais , Aves/genética , Osso e Ossos/anatomia & histologia , Citocromos b/classificação , Citocromos b/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Análise Discriminante , Extinção Biológica , Fósseis/anatomia & histologia , Nova Zelândia , Filogenia , Análise de Componente Principal , Análise de Sequência de DNA
19.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747476

RESUMO

Prehistoric human impacts on megafaunal populations have dramatically reshaped ecosystems worldwide. However, the effects of human exploitation on smaller species, such as anatids (ducks, geese, and swans) are less clear. In this study we apply ancient DNA and osteological approaches to reassess the history of Australasia's iconic black swans (Cygnus atratus) including the palaeo-behaviour of prehistoric populations. Our study shows that at the time of human colonization, New Zealand housed a genetically, morphologically, and potentially ecologically distinct swan lineage (C. sumnerensis, Pouwa), divergent from modern (Australian) C. atratus Morphological analyses indicate C. sumnerensis exhibited classic signs of the 'island rule' effect, being larger, and likely flight-reduced compared to C. atratus Our research reveals sudden extinction and replacement events within this anatid species complex, coinciding with recent human colonization of New Zealand. This research highlights the role of anthropogenic processes in rapidly reshaping island ecosystems and raises new questions for avian conservation, ecosystem re-wilding, and de-extinction.


Assuntos
Anseriformes/classificação , DNA Antigo , Extinção Biológica , Animais , Austrália , Humanos , Ilhas , Nova Zelândia
20.
Zootaxa ; 4236(1): zootaxa.4236.1.7, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28264342

RESUMO

On-going conflict in use of the name Diomedea exulans Linnaeus, 1758 for different taxa of the great albatrosses (Wandering Albatross complex) is resolved by neotypification, fixing the name to the large subantarctic form formerly often known as D. chionoptera Salvin, 1896. Application of all scientific names in the complex is reviewed, an annotated synonymy for the large subantarctic form is provided, available names for smaller, temperate-zone forms are listed, and unavailable and otherwise invalid names referable to the complex are identified. Syntypes of D. chionoptera and D. spadicea J.F. Gmelin, 1789 are lectotypified as well, fixing their names as synonyms of D. exulans to prevent possible disturbance to in-use names for the smaller, temperate-zone forms.


Assuntos
Aves , Animais , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA