Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 2127-2148, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966978

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons having been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.


Assuntos
Drosophila melanogaster , Neurônios , Animais , Neurônios/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos
2.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37502991

RESUMO

Cellular neurobiology has benefited from recent advances in the field of cryo-electron tomography (cryo-ET). Numerous structural and ultrastructural insights have been obtained from plunge-frozen primary neurons cultured on electron microscopy grids. With most primary neurons been derived from rodent sources, we sought to expand the breadth of sample availability by using primary neurons derived from 3rd instar Drosophila melanogaster larval brains. Ultrastructural abnormalities were encountered while establishing this model system for cryo-ET, which were exemplified by excessive membrane blebbing and cellular fragmentation. To optimize neuronal samples, we integrated substrate selection, micropatterning, montage data collection, and chemical fixation. Efforts to address difficulties in establishing Drosophila neurons for future cryo-ET studies in cellular neurobiology also provided insights that future practitioners can use when attempting to establish other cell-based model systems.

3.
Front Genome Ed ; 4: 803375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419562

RESUMO

One overarching goal of gene therapy is the replacement of faulty genes with functional ones. A significant hurdle is presented by the fact that under- or over-expression of a protein may cause disease as readily as coding mutations. There is a clear and present need for pipelines to translate experimentally validated gene therapy strategies to clinical application. To address this we developed a modular, single-transgene expression system for replacing target genes with physiologically expressed variants. In order to accomplish this, we first designed a range of 5' UTR "attenuator" sequences which predictably diminish translation of the paired gene. These sequences provide wide general utility by allowing control over translation from high expression, ubiquitous promoters. Importantly, we demonstrate that this permits an entirely novel knockdown and rescue application by pairing microRNA-adapted shRNAs alongside their respective replacement gene on a single transcript. A noteworthy candidate for this corrective approach is the degenerative and uniformly fatal motor neuron disease ALS. A strong proportion of non-idiopathic ALS cases are caused by varied mutations to the SOD1 gene, and as clinical trials to treat ALS are being initiated, it is important to consider that loss-of-function mechanisms contribute to its pathology as strongly as any other factor. As a generalized approach to treat monogenic diseases caused by heterogeneous mutations, we demonstrate complete and predictable control over replacement of SOD1 in stable cell lines by varying the strength of attenuators.

4.
J Comp Physiol B ; 187(5-6): 815-825, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28332020

RESUMO

The objective of this study is to determine how a hibernating mammal avoids the formation of blood clots under periods of low blood flow. A microfluidic vascular injury model was performed to differentiate the effects of temperature and shear rate on platelet adhesion to collagen. Human and ground squirrel whole blood was incubated at 15 or 37 °C and then passed through a microfluidic chamber over a 250-µm strip of type I fibrillar collagen at that temperature and the shear rates of 50 or 300 s-1 to simulate torpid and aroused conditions, respectively. At 15 °C, both human and ground squirrel platelets showed a 90-95% decrease in accumulation on collagen independent of shear rate. At 37 °C, human platelet accumulation reduced by 50% at 50 s-1 compared to 300 s-1, while ground squirrel platelet accumulation dropped by 80%. When compared to platelets from non-hibernating animals, platelets from animals collected after arousal from torpor showed a 60% decrease in binding at 37 °C and 300 s-1, but a 2.5-fold increase in binding at 15 °C and 50 s-1. vWF binding in platelets from hibernating ground squirrels was decreased by 50% relative to non-hibernating platelets. The source of the plasma that platelets were stored in did not affect the results indicating that the decreased vWF binding was a property of the platelets. Upon chilling, ground squirrel platelets increase microtubule assembly leading to the formation of long rods. This shape change is concurrent with sequestration of platelets in the liver and not the spleen. In conclusion, it appears that ground squirrel platelets are sequestered in the liver during torpor and have reduced binding capacity for plasma vWF and lower accumulation on collagen at low shear rates and after storage at cold temperatures, while still being activated by external agonists. These adaptations would protect the animals from spontaneous thrombus formation during torpor but allow them to restore normal platelet function upon arousal.


Assuntos
Plaquetas/fisiologia , Sciuridae/fisiologia , Torpor/fisiologia , Animais , Colágeno/fisiologia , Fibrinogênio/fisiologia , Humanos , Temperatura , Fator de von Willebrand/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA