Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(4): 957-968, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36759157

RESUMO

Sport-related injuries to articular structures often alter the sensory information conveyed by joint structures to the nervous system. However, the role of joint sensory afferents in motor control is still unclear. Here, we evaluate the role of knee joint sensory afferents in the control of quadriceps muscles, hypothesizing that such sensory information modulates control strategies that limit patellofemoreal joint loading. We compared locomotor kinematics and muscle activity before and after inhibition of knee sensory afferents by injection of lidocaine into the knee capsule of rats. We evaluated whether this inhibition reduced the strength of correlation between the activity of vastus medialis (VM) and vastus lateralis (VL) both across strides and within each stride, coordination patterns that limit net mediolateral patellofemoral forces. We also evaluated whether this inhibition altered correlations among the other quadriceps muscle activity, the time-profiles of individual EMG envelopes, or movement kinematics. Neither the EMG envelopes nor limb kinematics was affected by the inhibition of knee sensory afferents. This perturbation also did not affect the correlations between VM and VL, suggesting that the regulation of patellofemoral joint loading is mediated by different mechanisms. However, inhibition of knee sensory afferents caused a significant reduction in the correlation between vastus intermedius (VI) and both VM and VL across, but not within, strides. Knee joint sensory afferents may therefore modulate the coordination between the vasti muscles but only at coarse time scales. Injuries compromising joint afferents might result in altered muscle coordination, potentially leading to persistent internal joint stresses and strains.NEW & NOTEWORTHY Sensory afferents originating from knee joint receptors provide the nervous system with information about the internal state of the joint. In this study, we show that these sensory signals are used to modulate the covariations among the activity of a subset of vasti muscles across strides of locomotion. Sport-related injuries that damage joint receptors may therefore compromise these mechanisms of muscle coordination, potentially leading to persistent internal joint stresses and strains.


Assuntos
Articulação do Joelho , Músculo Quadríceps , Humanos , Animais , Ratos , Músculo Quadríceps/fisiologia , Eletromiografia , Articulação do Joelho/fisiologia , Joelho , Locomoção
2.
Proc Natl Acad Sci U S A ; 117(14): 8135-8142, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205442

RESUMO

Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.


Assuntos
Contração Isométrica/fisiologia , Articulações/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Músculo Quadríceps/inervação , Animais , Fenômenos Biomecânicos , Eletrodos Implantados , Eletromiografia/instrumentação , Feminino , Membro Posterior/inervação , Membro Posterior/fisiologia , Modelos Lineares , Músculo Quadríceps/fisiologia , Ratos
3.
J Neural Eng ; 16(3): 036005, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30754031

RESUMO

OBJECTIVE: Recovery of voluntary gait after spinal cord injury (SCI) requires the restoration of effective motor cortical commands, either by means of a mechanical connection to the limbs, or by restored functional connections to muscles. The latter approach might use functional electrical stimulation (FES), driven by cortical activity, to restore voluntary movements. Moreover, there is evidence that this peripheral stimulation, synchronized with patients' voluntary effort, can strengthen descending projections and recovery. As a step towards establishing such a cortically-controlled FES system for restoring function after SCI, we evaluate here the type and quantity of neural information needed to drive such a brain machine interface (BMI) in rats. We compared the accuracy of the predictions of hindlimb electromyograms (EMG) and kinematics using neural data from an intracortical array and a less-invasive epidural array. APPROACH: Seven rats were trained to walk on a treadmill with a stable pattern. One group of rats (n = 4) was implanted with intracortical arrays spanning the hindlimb sensorimotor cortex and EMG electrodes in the contralateral hindlimb. Another group (n = 3) was implanted with epidural arrays implanted on the dura overlying hindlimb sensorimotor cortex. EMG, kinematics and neural data were simultaneously recorded during locomotion. EMGs and kinematics were decoded using linear and nonlinear methods from multiunit activity and field potentials. MAIN RESULTS: Predictions of both kinematics and EMGs were effective when using either multiunit spiking or local field potentials (LFPs) recorded from intracortical arrays. Surprisingly, the signals from epidural arrays were essentially uninformative. Results from somatosensory evoked potentials (SSEPs) confirmed that these arrays recorded neural activity, corroborating our finding that this type of array is unlikely to provide useful information to guide an FES-BMI for rat walking. SIGNIFICANCE: We believe that the accuracy of our decoders in predicting EMGs from multiunit spiking activity is sufficient to drive an FES-BMI. Our future goal is to use this rat model to evaluate the potential for cortically-controlled FES to be used to restore locomotion after SCI, as well as its further potential as a rehabilitative technology for improving general motor function.


Assuntos
Interfaces Cérebro-Computador , Espaço Epidural/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletromiografia/métodos , Feminino , Previsões , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA