Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Physiol ; 15: 1438194, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113939

RESUMO

Background: Ankle sprains are prevalent in sports, often causing complex injuries to the lateral ligaments. Among these, anterior talofibular ligament (ATFL) injuries constitute 85%, and calcaneofibular ligament (CFL) injuries comprise 35%. Despite conservative treatment, some ankle sprain patients develop chronic lateral ankle instability (CLAI). Thus, this study aimed to investigate stress response and neural control alterations during landing in lateral ankle ligament injury patients. Method: This study recruited twenty individuals from a Healthy group and twenty CLAI patients performed a landing task using relevant instruments to collect biomechanical data. The study constructed a finite element (FE) foot model to examine stress responses in the presence of laxity of the lateral ankle ligaments. The lateral ankle ligament was modeled as a hyperelastic composite structure with a refined representation of collagen bundles and ligament laxity was simulated by adjusting material parameters. Finally, the validity of the finite element model is verified by a high-speed dual fluoroscopic imaging system (DFIS). Result: CLAI patients exhibited earlier Vastus medialis (p < 0.001) and tibialis anterior (p < 0.001) muscle activation during landing. The FE analysis revealed that with laxity in the ATFL, the peak von Mises stress in the fifth metatarsal was 20.74 MPa, while with laxity in the CFL, it was 17.52 MPa. However, when both ligaments were relaxed simultaneously, the peak von Mises stress surged to 21.93 MPa. When the ATFL exhibits laxity, the CFL is subjected to a higher stress of 3.84 MPa. Conversely, when the CFL displays laxity, the ATFL experiences a peak von Mises stress of 2.34 MPa. Conclusion: This study found that changes in the laxity of the ATFL and the CFL are linked to shifts in metatarsal stress levels, potentially affecting ankle joint stability. These alterations may contribute to the progression towards CLAI in individuals with posterolateral ankle ligament injuries. Additionally, significant muscle activation pattern changes were observed in CLAI patients, suggesting altered neural control strategies post-ankle ligament injury.

2.
Bioengineering (Basel) ; 11(8)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39199783

RESUMO

BACKGROUND: Physiological curvature changes of the lumbar spine and disc herniation can cause abnormal biomechanical responses of the lumbar spine. Finite element (FE) studies on special weightlifter models are limited, yet understanding stress in damaged lumbar spines is crucial for preventing and rehabilitating lumbar diseases. This study analyzes the biomechanical responses of a weightlifter with lumbar straightening and L4-L5 disc herniation during symmetric bending and lifting to optimize training and rehabilitation. METHODS: Based on the weightlifter's computed tomography (CT) data, an FE lumbar spine model (L1-L5) was established. The model included normal intervertebral discs (IVDs), vertebral endplates, ligaments, and a degenerated L4-L5 disc. The bending angle was set to 45°, and weights of 15 kg, 20 kg, and 25 kg were used. The flexion moment for lifting these weights was theoretically calculated. The model was tilted at 45° in Abaqus 2021 (Dassault Systèmes Simulia Corp., Johnston, RI, USA), with L5 constrained in all six degrees of freedom. A vertical load equivalent to the weightlifter's body mass and the calculated flexion moments were applied to L1 to simulate the weightlifter's bending and lifting behavior. Biomechanical responses within the lumbar spine were then analyzed. RESULTS: The displacement and range of motion (ROM) of the lumbar spine were similar under all three loading conditions. The flexion degree increased with the load, while extension remained unchanged. Right-side movement and bending showed minimal change, with slightly more right rotation. Stress distribution trends were similar across loads, primarily concentrated in the vertebral body, increasing with load. Maximum stress occurred at the anterior inferior margin of L5, with significant stress at the posterior joints, ligaments, and spinous processes. The posterior L5 and margins of L1 and L5 experienced high stress. The degenerated L4-L5 IVD showed stress concentration on its edges, with significant stress also on L3-L4 IVD. Stress distribution in the lumbar spine was uneven. CONCLUSIONS: Our findings highlight the impact on spinal biomechanics and suggest reducing anisotropic loading and being cautious of loaded flexion positions affecting posterior joints, IVDs, and vertebrae. This study offers valuable insights for the rehabilitation and treatment of similar patients.

3.
Bioengineering (Basel) ; 11(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39061737

RESUMO

To determine the impact of active muscle on the dynamic response of a pilot's neck during simulated emergency ejection, a detailed three-dimensional (3D) cervical spine (C0-T1) finite element (FE) model integrated with active muscles was constructed. Based on the Hill-type model characterising the muscle force activation mechanics, 13 major neck muscles were modelled. The active force generated by each muscle was simulated as functions of (i) active state (Na), (ii) velocity (Fv(v)), and (iii) length (FL(L)). An acceleration-time profile with an initial acceleration rate of 125 G·s-1 in the 0-80 ms period, reaching peak acceleration of 10 G, then kept constant for a further 70 ms, was applied. The rotational angles of each cervical segment under these ejection conditions were compared with those without muscles and with passive muscles derived from the previous study. Similar trends of segmental rotation were observed with S- and C-curvature of the cervical spine in the 150 ms span analysed. With active muscles, the flexion motion of the C0-C2 segments exhibited higher magnitudes of rotation compared to those without muscle and passive muscle models. The flexion motion increased rapidly and peaked at about 95-105 ms, then decreased rapidly to a lower magnitude. Lower C2-T1 segments exhibited less variation in flexion and extension motions. Overall, during emergency ejections, active muscle activities effectively reduce the variability in rotational angles across cervical segments, except C0-C2 segments in the 60-120 ms period. The role of the active state dynamics of the muscles was crucial to the magnitude of the muscle forces demonstrated. This indicates that it is crucial for pilots to consciously contract their muscles before ejection to prevent cervical spine injuries.

4.
Bioengineering (Basel) ; 11(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790384

RESUMO

BACKGROUND: Human locomotion involves the coordinated activation of a finite set of modules, known as muscle synergy, which represent the motor control strategy of the central nervous system. However, most prior studies have focused on isolated muscle activation, overlooking the modular organization of motor behavior. Therefore, to enhance comprehension of muscle coordination dynamics during multi-joint movements in chronic ankle instability (CAI), exploring muscle synergies during landing in CAI patients is imperative. METHODS: A total of 22 patients with unilateral CAI and 22 healthy participants were recruited for this research. We employed a recursive model for second-order differential equations to process electromyographic (EMG) data after filtering preprocessing, generating the muscle activation matrix, which was subsequently inputted into the non-negative matrix factorization model for extraction of the muscle synergy. Muscle synergies were classified utilizing the K-means clustering algorithm and Pearson correlation coefficients. Statistical parameter mapping (SPM) was employed for temporal modular parameter analyses. RESULTS: Four muscle synergies were identified in both the CAI and healthy groups. In Synergy 1, only the gluteus maximus showed significantly higher relative weight in CAI compared to healthy controls (p = 0.0035). Synergy 2 showed significantly higher relative weights for the vastus lateralis in the healthy group compared to CAI (p = 0.018), while in Synergy 4, CAI demonstrated significantly higher relative weights of the vastus lateralis compared to healthy controls (p = 0.030). Furthermore, in Synergy 2, the CAI group exhibited higher weights of the tibialis anterior compared to the healthy group (p = 0.042). CONCLUSIONS: The study suggested that patients with CAI exhibit a comparable modular organizational framework to the healthy group. Investigation of amplitude adjustments within the synergy spatial module shed light on the adaptive strategies employed by the tibialis anterior and gluteus maximus muscles to optimize control strategies during landing in patients with CAI. Variances in the muscle-specific weights of the vastus lateralis across movement modules reveal novel biomechanical adaptations in CAI, offering valuable insights for refining rehabilitation protocols.

5.
Bioengineering (Basel) ; 10(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37760161

RESUMO

A detailed three-dimensional (3D) head-neck (C0-C7) finite element (FE) model was developed and used to dictate the motions of each cervical spinal segment under static physiological loadings of flexion and extension with a magnitude of 1.0 Nm and rear-end impacts. In this dynamic study, a rear-end impact pulse was applied to C7 to create accelerations of 4.5 G and 8.5 G. The predicted segmental motions and displacements of the head were in agreement with published results under physiological loads of 1.0 Nm. Under rear-end impact conditions, the effects of peak pulse acceleration and headrest angles on the kinematic responses of the head-neck complex showed rates of increase/decrease in the rotational motion of various cervical spinal segments that were different in the first 200 ms. The peak flexion rotation of all segments was lower than the combined ROM of flexion and extension. The peak extension rotation of all segments showed variation compared to the combined ROM of flexion and extension depending on G and the headrest angle. A higher acceleration of C7 increased the peak extension angle of lower levels, but the absolute increase was restricted by the distance between the head and the headrest. A change in the headrest angle from 45° to 30° resulted in a change in extension rotation at the lower C5-C6 segments to flexion rotation, which further justified the effectiveness of having distance between the head and the headrest. This study shows that the existing C0-C7 FE model is efficient at defining the gross reactions of the human cervical spine under both physiological static and simulated whiplash circumstances. The fast rate of changes in flexion and extension rotation of various segments may result in associated soft tissues and bony structures experiencing tolerances beyond their material characteristic limits. It is suggested that a proper location and angle of the headrest could effectively prevent the cervical spine from injury in traumatic vehicular accidents.

6.
Bioengineering (Basel) ; 9(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36550930

RESUMO

(1) Background: Scoliosis has the mechanical characteristic of asymmetric stress distribution, which is one of the reasons for the aggravation of scoliosis. Bracing therapy is the best treatment for AIS, but it is difficult and costly to operate. Is it possible to reduce pressure in the concave side by relaxing the ITL in the concave side of scoliosis, so as to improve the abnormal stress distribution of scoliosis? In this paper, a finite element method was used to simulate the effect of the relaxation of concave-side ITL on the stress of a lumbar spine with scoliosis, which provides some guidance for the treatment of scoliosis. (2) Methods: Using CT images of a patient with scoliosis whose Cobb Angle was 43° and Lordosis Angle was 45, a scoliosis lumbar was established, and Young's modulus of the ITL of the concave-side lumbar spine was reduced by 95% to simulate ligament relaxation. By comparing the stress condition of the model vertebral body with no ligament relaxation, the effect of concave-side ITL relaxation on the mechanical characteristics of scoliosis lumbar spine was explored. (3) Results: An effective and complete model of the lumbar spine was established. The concave ITL relaxed, which only had a great impact on the bending loads. After the ligament was relaxed, the stability of the spine was reduced. Stress concentration on the concave side of vertebrae and the IVD was aggravated. Under loads on the convex side, the maximum stress on the vertebral body and the IVD increased significantly, making lumbar vertebrae more vulnerable to injury. (4) Conclusions: Laxity of the ITL on the concave side of the AIS lumbar only affects the bending load. Laxity of the concave-side ligament will reduce the stability of the lumbar, aggravate the uneven stress distribution of scoliotic lumbar vertebrae, increase the risk of IVD injury, and be unfavorable for the scoliotic lumbar spine. Relaxation of the concave ITL alone is not an effective way to treat scoliosis.

7.
Antioxidants (Basel) ; 11(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36139825

RESUMO

A physical exercise program is one of the commonly used methods for improving an individual's antioxidative capacity. However, an inappropriate physical exercise program would induce extra oxidative stress (OS), and the relationship between the details of a physical exercise protocol and the severity of intracellular OS is still unclear. A systematic review and meta-analysis of randomized controlled trials were conducted by searching PubMed, Medline, and Web of Science with the eligibility criteria: (1) participants over 18 years old; (2) physical exercise interventions; (3) 8-hydroxydeoxyguanosine, F2-isoprostanes, and protein carbonyls (PCs) as outcome measures; (4) published in English and peer-reviewed. 12 studies were included, and the data of 8 in them were pooled together. The agreement between authors reached a kappa value of 0.73. The results of the meta-analysis showed that: (1) the level of OS did not depend on the absolute intensity of physical exercise but on both the intensity and the volume of exercise; (2) high-intensity aerobic exercise (HIAE) and a combined protocol of HIAE and resistance training had the highest potential to induce large OS in unhealthy people; (3) the OS induced by moderate-to-high intensity aerobic exercise was significantly larger than that induced by ordinary life activities in healthy adults; (4) high-intensity interval training and moderate-intensity aerobic exercise had the lowest and sub-lowest probabilities to induce high intracellular OS for unhealthy adults. activities induce OS in various tissues in the human body, and the severity of OS depends on many factors of physical exercises as well as the health condition of an individual. A high-intensity and high-volume physical exercise program has the largest possibility of inducing severe OS, while a moderate-intensity aerobic exercise program and a high-intensity interval training program with a relatively low volume might be beneficial to the redox balance for unhealthy individuals. In conclusion, continuous aerobic exercise under moderate-intensity or high-intensity interval training could be recommended to enhance the body's capacity for maintaining redox balance, especially for unhealthy individuals. The PROSPERO Registration Number is CRD42022349687.

8.
Front Bioeng Biotechnol ; 10: 833774, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309978

RESUMO

Long-distance running has gained massive popularity in recent years, yet the intra-foot adaptations during this event remain unclear. This study aimed to examine the kinematic and ground reaction force alterations induced within the foot following a 5 and 10 km run using the Oxford Foot Model Ten marathon-experienced recreational runners participated in this study. Five-kilometer running led to more rearfoot dorsiflexion, rearfoot eversion, and rearfoot rotation while less forefoot plantarflexion during the stance phase. Increased rearfoot plantarflexion, while decreased forefoot plantarflexion, supination, adduction, and hallux plantarflexion were observed at 10 km. In addition, the forefoot space of footwear was found to play a role in hallux kinematics. Concerning GRFs, only a lesser propulsive force was presented after a 10 km run. Findings of this study showed that 5 km of running would induce excessive foot motion while 10 km of running may gradually change the foot posture and lead to reduced propulsive forces, which could potentially increase the risks of running-related injuries (RRI) due to overuse or fatigue. Nevertheless, further research is warranted, and this study could be used as a preliminary reference to evaluate and predict foot running-related injuries.

9.
Biology (Basel) ; 11(1)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053125

RESUMO

BACKGROUND: The stress of foot bone can effectively evaluate the functional damage caused by foot deformity and the results of operation. In this study, the finite element method was used to investigate the degree of displacement of distal chevron osteotomy on metatarsal stress and metatarsophalangeal joint load; Methods: Four finite element models of displacement were established by using the CT images of a patient with moderate hallux valgus (hallux valgus angle and intermetatarsal angle were 26.74° and 14.09°, respectively), and the validity of the model was verified. Each finite element model consisted of bones and various cartilage structures, ligaments, and plantar fascia, as well as encapsulated soft tissue. Except for soft tissue, the material properties of other parts were isotropic linear elastic material, and the encapsulated soft tissue was set as nonlinear hyperelastic material. The mesh was tetrahedral mesh. Link elements were used in ligament and plantar fascia. A ground reaction force with a half-body weight was applied at the bottom of the floor to simulate the ground reaction when standing. The upper surfaces of the encapsulated soft tissue, distal tibia, and distal fibula were fixed. The stress distribution of metatarsals and the stress of cartilage of the first metatarsophalangeal joint were compared and analyzed; Results: Compared with the hallux valgus without osteotomy, the stress of the first metatarsals and second metatarsals of 2-4 mm decreased, and the stress of the interarticular cartilage of the first metatarsophalangeal joint with 4 mm was reduced. In the case of 6 mm, the stress value between the first metatarsal and the first metatarsophalangeal joint increased, and 4 mm was the most suitable distance; Conclusions: Compared with the hallux valgus without osteotomy, the stress of the first metatarsals and second metatarsals of 2-4 mm decreased, and the stress of the interarticular cartilage of the first metatarsophalangeal joint with 4 mm was reduced. In the case of 6 mm, the stress value between the first metatarsal and the first metatarsophalangeal joint increased, and 4 mm was the most suitable distance. For the degree of displacement of the distal chevron osteotomy, the postoperative stability and the stress distribution of metatarsal bone should be considered. Factors such as hallux valgus angle, intermetatarsal angle, patient's age, body weight, and metatarsal width should be considered comprehensively. The factors affecting osteotomy need to be further explored. The degree of displacement of osteotomy can be evaluated by FE method before the operation, and the most suitable distance can be obtained.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34682566

RESUMO

Pelvic floor disorder (PFD) is a common disease affecting the quality of life of middle-aged and elderly women. Pelvic floor muscle (PFM) damage is related to delivery mode, fetal size, and parity. Spontaneous vaginal delivery causes especially great damage to PFM. The purpose of this study was to summarize the characteristics of PFM action during the second stage of labor by collecting female pelvic MRI (magnetic resonance imaging) data and, further, to try to investigate the potential pathogenetic mechanism of PFD. A three-dimensional model was established to study the influence factors and characteristics of PFM strength. In the second stage of labor, the mechanical responses, possible damage, and the key parts of postpartum lesions of PFM due to the different fetal biparietal diameter (BPD) sizes were analyzed by finite element simulations. The research results showed that the peak stress and strain of PFM appeared at one-half of the delivery period and at the attachment point of the pubococcygeus to the skeleton. In addition, during the simulation process, the pubococcygeus was stretched by about 1.2 times and the levator ani muscle was stretched by more than two-fold. There was also greater stress and strain in the middle area of the levator ani muscle and pubococcygeus. According to the statistics, either being too young or in old maternal age will increase the probability of postpartum PFM injury. During delivery, the entire PFM underwent the huge deformation, in which the levator ani muscle and the pubococcygeus were seriously stretched and the attachment point between the pubococcygeus and the skeleton were the places with the highest probability of postpartum lesions.


Assuntos
Distúrbios do Assoalho Pélvico , Diafragma da Pelve , Idoso , Parto Obstétrico , Feminino , Humanos , Pessoa de Meia-Idade , Força Muscular , Diafragma da Pelve/diagnóstico por imagem , Distúrbios do Assoalho Pélvico/etiologia , Gravidez , Qualidade de Vida
11.
Appl Bionics Biomech ; 2021: 6618581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790988

RESUMO

Effective recommendations about how to decrease adverse effects of high heels (HH) need to be provided, since wearing HH is inevitable for most women in their daily life, regardless of their negative impacts on the foot morphology. The main purpose of this systematic review was to summarize studies which have provided specific information about how to effectively offset the negative effects of wearing HH, in the case of women, by means of examining heel height, insole, and heel base support (HBS). Some evidence indicate the following: (i) the range of appropriate heel height for HH shoes is 3.76 cm to 4.47 cm; (ii) compared to small HBS, the larger ones effectively increase gait stability, reduce risk of ankle injury, and improve comfort rating during HH walking; and (iii) the use of a total contact insert (TCI) significantly decreases plantar pressure and the impact on the foot, resulting in higher perceived comfort. It must be noted that these results are based on short-term research; therefore, any conclusions with regard to effects in the long term should be taken with a grain of salt. Nevertheless, future studies should be aimed at combining numerical and experimental methods, in order to provide personal recommendations for HH shoes by considering heel height and HBS size, based on the individual characters (weight, height, and age).

12.
Front Cardiovasc Med ; 8: 770975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127851

RESUMO

It is essential for patients with hypertension to effectively reduce and maintain appropriate blood pressure levels. As one of the non-pharmacological and invasive methods, physical exercise seems to improve blood pressure of the patients with hypertension. However, different volumes and intensities of physical exercise on the improvement of hypertension are different. To understand the effects of the type of exercise training on blood pressure and the other health status of patients with hypertension, a network meta-analysis was used to compare the mixed effects of different types of exercise training. This systematic review includes all eligible randomized controlled trials of PubMed, Medline, Cochrane Library, and CINAHL. Twelve studies met the inclusion criteria (n = 846 participants at the end of the study). The results show that a medium-intensity training (MIT) is best in improving the blood pressure of patients with hypertension, while a high-volume high-intensity interval training (HVHIIT) is better in reducing body mass and resting heart rate. In addition, the analysis of the exercise capacity shows that HVHIIT has a better effect on the improvement of patients with hypertension. Noticeably, long-term high-volume and appropriate intensity exercise can effectively improve the health status of patients with hypertension. In short, for patients with high blood pressure, MIT seems to be better at lowering blood pressure, while HVHIIT can better improve exercise ability and physical fitness. However, larger randomized controlled trials with a longer duration than those included in this meta-analysis are needed to confirm these results.

13.
Front Bioeng Biotechnol ; 9: 791238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988067

RESUMO

The therapeutic benefit of high heel shoes (HHS) for plantar fasciitis treatment is controversial. It has been suggested that plantar fascia strain can be decreased by heel elevation of shoes which helps in body weight redistribution throughout the length of the foot. Yet it is a fact that the repetitive tension caused by HHS wearing resulting in plantar fasciitis is a high-risk disease in HHS individuals who suffer heel and plantar pain. To explore the biomechanical function on plantar fascia under HHS conditions, in this study, musculoskeletal modeling (MsM) and finite element method (FEM) were used to investigate the effect of heel height on strain distribution of plantar fascia. Three-dimensional (3D) and one-dimensional (1D) finite element models of plantar fascia were generated to analyze the computed strain variation in 3-, 5-, and 7-cm heel heights. For validation, the computed foot contact pressure was compared with experimental measurement, and the strain value on 1D fascia was compared with previous studies. Results showed that the peak strain of plantar fascia was progressively increased on both 3D and 1D plantar fascia as heel elevated from 3 to 7 cm, and the maximum strain of plantar fascia occurs near the heel pain site at second peak stance. The 3D fascia model predicted a higher strain magnitude than that of 1D and provided a more reliable strain distribution on the plantar fascia. It is concluded that HHS with narrow heel support could pose a high risk on plantar fasciitis development, rather than reducing symptoms. Therefore, the heel elevation as a treatment recommendation for plantar fasciitis is questionable. Further studies of different heel support structures of shoes to quantify the effectiveness of heel elevation on the load-bearing mechanism of plantar fascia are recommended.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32664702

RESUMO

Traditional Chinese exercise (TCE) has gradually become one of the widespread complementary therapies for treatment and recovery of cancers. However, evidence based on the systematic evaluation of its efficacy is lacking, and there appears to be no conclusion regarding the setting of TCE interventions. The purpose of this systematic review is to summarize the current randomized controlled trials (RCTs) that outline the effects of TCE on cancer patients. Relevant studies were searched by GOOGLE SCHOLAR, SCIENCEDIRECT, and WEB OF SCIENCE using "traditional Chinese exercise" and "cancer." Only RCTs published in peer-reviewed English journals were included. A total of 27 studies covering 1616 cancer patients satisfied the eligibility criteria for this review. Despite the methodological limitation and relatively high risk of bias possessed by some included studies, positive evidence was still detected on the effects of TCE on these cancer-related health outcomes in physical, psychological, and physiological parameters. The 60-min or 90-min course of TCE intervention for two to three times per week for 10 to 12 weeks was found to be the most common setting in these studies and has effectively benefited cancer patients. These findings add scientific support to encourage cancer patients to practice TCE during or after conventional medical treatment. Nevertheless, future well-designed RCTs with improved methodology and larger sample size on this field are much warranted for further verification.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Exercício Físico , Neoplasias Pulmonares/terapia , Medicina Tradicional Chinesa , Ensaios Clínicos Controlados Aleatórios como Assunto , Austrália , Terapia por Exercício , Feminino , Humanos , Masculino , Resultado do Tratamento
15.
J Spinal Disord Tech ; 26(1): 29-36, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22015627

RESUMO

STUDY DESIGN: A finite element analysis of the screw pullout procedure for the osteoporotic cancellous bone using screw-bone unit model without cortical layer. OBJECTIVE: The objective is to determine the region of effect (RoE) during the screw pullout procedure and predict the proper amount of injection cement (AIC) in screw augmentation. SUMMARY OF BACKGROUND DATA: For the osteoporotic spine, the AIC is a critical factor for the augmentation screw performance and leakage risk. There are few studies on the proper AIC in literature. METHODS: Three finite element models were established, 2 screw-foam models were used for validation study, and 1 screw-bone model was used for investigation of RoE and AIC. The simulations of screw pullout were conducted. A velocity loading of 0.01 mm/s with a maximum displacement of 2.7 mm was applied on the screw. For the validation, the screw-foam models with 2 different densities were used for comparison of pullout force with those published experimental data. After validation, the screw-bone model was used to investigate the RoE and predict the proper AIC during screw augmentation in spine surgery. RESULTS: In validation, the predicted pullout strengths were 2028.8 N for high-density foam model and 607 N for low-density foam model, respectively. They were in good agreement with those of the published experiment. In the screw-bone model, the simulations demonstrated that the RoE changed with the displacement of screw and reached the maximum when the displacement of screw was 1.8 mm. Similar trend was found for the AIC with the displacement. The proper AIC was 2.6 mL when the displacement of screw was 1.8 mm in this study. CONCLUSIONS: The RoE and proper AIC for augmentation were evaluated in the osteoporotic spine. This information could provide practical reference for screw augmentation in spinal decompression and instrumentation in the spine surgery.


Assuntos
Cimentos Ósseos , Parafusos Ósseos , Modelos Biológicos , Coluna Vertebral/efeitos dos fármacos , Coluna Vertebral/cirurgia , Vertebroplastia/métodos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Resistência à Tração
16.
PLoS One ; 7(9): e41397, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028426

RESUMO

BACKGROUND: The mechanical response of the spinal cord during burst fracture was seldom quantitatively addressed and only few studies look into the internal strain of the white and grey matters within the spinal cord during thoracolumbar burst fracture (TLBF). The aim of the study is to investigate the mechanical response of the spinal cord during TLBF and correlate the percent canal compromise (PCC) with the strain in the spinal cord. METHODOLOGY/PRINCIPAL FINDINGS: A three-dimensional (3D) finite element (FE) model of human T12-L1 spinal cord with visco-elastic property was generated based on the transverse sections images of spinal cord, and the model was validated against published literatures under static uniaxial tension and compression. With the validated model, a TLBF simulation was performed to compute the mechanical strain in the spinal cord with the PCC. Linear regressions between PCC and strain in the spinal cord show that at the initial stage, with the PCC at 20%, and 45%, the corresponding mechanical strains in ventral grey, dorsal grey, ventral white, dorsal white matters were 0.06, 0.04, 0.12, 0.06, and increased to 0.14, 0.12, 0.23, and 0.13, respectively. At the recoiled stage, when the PCC was decreased from 45% to 20%, the corresponding strains were reduced to 0.03, 0.02, 0.04 and 0.03. The strain was correlated well with PCC. CONCLUSIONS/SIGNIFICANCE: The simulation shows that the strain in the spinal cord correlated well with the PCC, and the mechanical strains in the ventral regions are higher than those in the dorsal regions of spinal cord tissue during burst fracture, suggesting that the ventral regions of the spinal cord may susceptible to injury than the dorsal regions.


Assuntos
Fraturas por Compressão , Modelos Anatômicos , Medula Espinal , Fraturas da Coluna Vertebral , Fenômenos Biomecânicos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Traumatismos da Medula Espinal , Estresse Mecânico
17.
Med Eng Phys ; 33(10): 1228-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21676642

RESUMO

Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military.


Assuntos
Análise de Elementos Finitos , Pé/anatomia & histologia , Modelos Anatômicos , Sapatos , Tornozelo/anatomia & histologia , Tornozelo/diagnóstico por imagem , Pé/diagnóstico por imagem , Humanos , Pressão , Estresse Mecânico , Tomografia Computadorizada por Raios X
18.
Med Eng Phys ; 33(6): 764-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21354360

RESUMO

Truly representative architectural parameters of trabeculea can be extremely difficult to achieve based on scanning images because of variable porosity and distribution of trabeculae within the specific overall scanned volume of bone. Accordingly, in present study different selective volume of interests, measured from centroid of µ-CT scanned human vertebral body, were analyzed to determine the architectural parameters (BV/TV, BS/BV, Tb.Th, Tb.N, Tb.Sp) of trabeculae within these volumes and to suggest an optimal volume for representative architectural parameters of the overall scanned volume. Nonlinear curve fitting method was also applied to obtain the correlation between the parameters and the volume of interests. The results show different volumes of interests give different morphological indices of BV/TV, BS/BV, Tb.N and Tb.Sp within a specific scanned vertebral body. Tb.Th shows relatively small variation (0.8%) even with sample volume of less than (2mm)(3). Statistical analysis shows that with sample volume of less than (6mm)(3), significant different in the measured BV/TV comparing against the control group. Tb.N and Tb.Sp show significant different values against the control group for volume of interest less than (4mm)(3) and (5mm)(3), respectively. However, no significant differences were observed in the indices of BS/BV and Tb.Th. Present study shows that an optimal volume of interests of greater than (6mm)(3) be selected to predict the architectural parameters of trabeculae of human vertebral bodies.


Assuntos
Osso e Ossos/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Adulto , Densidade Óssea , Osso e Ossos/patologia , Cadáver , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Feminino , Humanos , Masculino
19.
OMICS ; 13(6): 521-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19780682

RESUMO

A three-dimensional finite element model of the spine T12-S1 segment was developed and used to investigate biodynamics characteristics of the human lumbar spine. The T12-S1 model was carefully built including spinal vertebrae, intervertebral discs, and ligaments so as to approach the real human spine. Finite element modal analysis was carried out to obtain vibration modes and resonant frequencies of the spine. The analytical results indicate that the vertical resonant frequency of the spinal T12-S1 segment with a mass of 40 kg on the top vertebra is 7.68 Hz. The vertical resonant frequencies of spine motion segments decrease with the number of spine motion segments increasing. The tissue injury, such as disc denucleation and removal both of facet articulations and their capsular ligaments may decrease the resonant frequencies of spine in different extent. The denucleation makes larger influence on vertical resonant frequencies than facetectomy does. The denucleation is more harmful to the facet articulations under whole body vibration. The dynamic characteristics of the T12-S1 model accords with the actual human spine, and it is useful for the relative studies of the human spine, such as biomechanical characteristics, vibration-related injury mechanism of the human spine, and development of vibration-related mechanical products.


Assuntos
Análise de Elementos Finitos , Disco Intervertebral , Vértebras Lombares , Modelos Anatômicos , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Disco Intervertebral/anatomia & histologia , Disco Intervertebral/química , Disco Intervertebral/lesões , Vértebras Lombares/anatomia & histologia , Vértebras Lombares/química , Vértebras Lombares/lesões , Estresse Mecânico , Vibração , Suporte de Carga
20.
Spine (Phila Pa 1976) ; 34(19): E682-8, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19730200

RESUMO

STUDY DESIGN: A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. OBJECTIVE: This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. SUMMARY OF BACKGROUND DATA: Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. METHODS: The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. RESULTS: The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. CONCLUSION: The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.


Assuntos
Disco Intervertebral/fisiopatologia , Ligamentos/fisiopatologia , Vértebras Lombares/fisiopatologia , Doenças da Coluna Vertebral/fisiopatologia , Vibração , Fenômenos Biomecânicos , Cadáver , Simulação por Computador , Análise de Elementos Finitos , Humanos , Disco Intervertebral/lesões , Ligamentos/lesões , Vértebras Lombares/lesões , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Ossos Pélvicos/fisiopatologia , Amplitude de Movimento Articular , Rotação , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA