Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 218: 115013, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495970

RESUMO

Food loss or waste is a far-reaching problem and has indeed become a worrying issue that is growing at an alarming rate. Fruits and vegetables are lost or wasted at the highest rate among the composition of food waste. Furthermore, the world is progressing toward sustainable development; hence, an efficient approach to valorise fruit and vegetable waste (FVW) is necessary. A simple phenotypic characterisation of microbiota isolated from the fermented FVW was conducted, and its effectiveness toward wastewater treatment was investigated. Presumptive identification suggested that yeast is dominant in this study, accounting for 85% of total isolates. At the genus level, the enriched medium's microbial community consists of Saccharomyces, Bacillus and Candida. Ammonium in the wastewater can enhance certain bacteria to grow, such as lactic acid bacteria, resulting in decreased NH4+ concentration at the end of the treatment to 0.5 mg/L. In addition, the fermented biowaste could reduce PO43- by 90% after the duration of treatment. Overall, FVW is a valuable microbial resource, and the microbial population enables a reduction in organic matter such as NH4+ and PO43-. This study helps explore the function and improve the effectiveness of utilising biowaste by understanding the microorganisms responsible for producing eco-enzyme.


Assuntos
Eliminação de Resíduos , Purificação da Água , Verduras , Frutas , Águas Residuárias , Fermentação
2.
Anim Biotechnol ; : 1-14, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576030

RESUMO

Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.

3.
Environ Res ; 205: 112544, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902376

RESUMO

Using solar energy to catalyse photo-driven processes to address the energy crisis and environmental pollution plays a role in the path to a sustainable society. Many oxide-based materials, especially perovskite oxides, have been widely investigated as catalysts for photocatalysis in energy and environment because of the low-cost and earth-abundant and good performance. At this stage, there is a need to present a scientific-based evaluation of the technologies developed so far and identify the most sustainable technologies and the existing limitations and opportunities for their commercialisation. This work comprehensively investigated the outcomes using various scientometric indices on perovskite oxide-based photo(electro)catalysts for water splitting, nitrogen fixation, carbon dioxide conversion, organic pollutant degradation, current trends and advances in the field. According to the results achieved, efforts in both energy and environment based on perovskite oxides have been initiated in the 1990s and accelerated since the 2010s. China and the United States were identified as the most contributing countries. Based on the results achieved in this study, the main milestones and current trends in the development of this field have been identified. The aim of this research is to provide useful guidelines for the further investigation of perovskite oxide-based catalysts for photoelectrocatalysis and photocatalysis both in energy and environment on the applications such as water splitting, nitrogen fixation, carbon dioxide conversion, and wastewater treatment.


Assuntos
Compostos de Cálcio , Óxidos , Catálise , Titânio
4.
Biomed Pharmacother ; 87: 296-301, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28063411

RESUMO

The edible red seaweed (Kappaphycus alvarezii) is one of the algae species which was found to be rich in nutrients and nutraceutical. Hence, K. alvarezii may have the ability to suppress cancer through its antiproliferative properties. The aim of this study was to investigate the potential compounds of K. alvarezii, cytotoxicity properties of K. alvarezii extract on breast cancer cell line (MCF-7), investigated toxicity effect of high dosage K. alvarezii extract in rats and determined the effect of K. alvarezii on 7, 12-dimethylbenz[a]anthracene (DMBA) mammary carcinogenesis in rats. The method of LCMS/MS and MTT assay were used. For animal study, sub-chronic toxicity method was used, the rats were supplemented with 2000mg/kg body weight daily of K. alvarezii crude extracts by oral gavage. For the anticancer effect of K. alvarezii crude extracts, this study consisted of three groups of the experimental, untreated and normal group of rats. The experimental and untreated groups of rats were induced with mammary tumour with DMBA. The experimental group of rats was given with K. alvarezii crude extracts orally. The results were being used to compare with the untreated group of rats and normal group of rats. All the rats were fed with standard diet and water ad libitum. Mortality, behavior changes and tumour sizes were observed specifically. The differences between the three groups of rats were evaluated by using the ANOVA test. By using LCMS/MS method, six unknown compounds were analysed. K. alvarezii crude extract reduced the cell viability of MCF-7 from 84.91% to 0.81% and the IC50 value is 4.1±0.69mg/mL. For sub-chronic and heavy metal toxicity studies, no significant difference was found in haematological and biochemical values of the control group and experimental group. The growth rate of tumours in the untreated group of rats was found significantly higher than the experimental group of rats. Besides that, the white blood cells level in untreated group was found significantly higher than the experimental group and the normal group. In conclusion, K. alvarezii extract might able to slow down the growth rate of the tumour cells, therefore, identification of an active compound of inhibition growth rate of the tumour cells can be positively carried out in the future.


Assuntos
Neoplasias Mamárias Experimentais/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Rodófitas , Alga Marinha , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
5.
J Phycol ; 48(1): 155-62, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27009660

RESUMO

Galactose-1-phosphate uridylyltransferase (GALT) catalyzes the reversible conversion of glucose-1-phosphate and UDP-galactose to galactose-1-phosphate and UDP-glucose. This enzyme is also responsible for one of the biochemical steps that produce the precursors of agar and agarose. In this study, we report the molecular cloning and sequence analyses of a cDNA encoding GALT, from Gracilaria changii (B. M. Xia et I. A. Abbott) I. A. Abbott, J. Zhang et B. M. Xia, which constitutes a genus of seaweeds that supply more than 60% of the world's agar and agarose. We have subcloned this cDNA into a bacterial expression cloning vector and characterized the enzyme activities of its recombinant proteins in vitro. The GcGALT gene was shown to be up-regulated by salinity stresses. The abundance of transcripts encoding GcGALT was the highest in G. changii, followed by Gracilaria edulis and Gracilaria salicornia in a descending order, corresponding to their respective agar contents. Our findings indicated that GALT could be one of the components that determines the agar yield in Gracilaria species.

6.
Mar Biotechnol (NY) ; 11(4): 513-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19043658

RESUMO

Light regulates photosynthesis, growth and reproduction, yield and properties of phycocolloids, and starch contents in seaweeds. Despite its importance as an environmental cue that regulates many developmental, physiological, and biochemical processes, the network of genes involved during light deprivation are obscure. In this study, we profiled the transcriptome of Gracilaria changii at two different irradiance levels using a cDNA microarray containing more than 3,000 cDNA probes. Microarray analysis revealed that 93 and 105 genes were up- and down-regulated more than 3-fold under light deprivation, respectively. However, only 50% of the transcripts have significant matches to the nonredundant peptide sequences in the database. The transcripts that accumulated under light deprivation include vanadium chloroperoxidase, thioredoxin, ferredoxin component, and reduced nicotinamide adenine dinucleotide dehydrogenase. Among the genes that were down-regulated under light deprivation were genes encoding light harvesting protein, light harvesting complex I, phycobilisome 7.8 kDa linker polypeptide, low molecular weight early light-inducible protein, and vanadium bromoperoxidase. Our findings also provided important clues to the functions of many unknown sequences that could not be annotated using sequence comparison.


Assuntos
Gracilaria/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gracilaria/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fotossíntese/genética , Fotossíntese/fisiologia , Regulação para Cima
7.
J Phycol ; 45(5): 1093-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27032354

RESUMO

Osmotic stress is one of the most significant natural abiotic stresses that occur in the intertidal zones. Seaweeds may physiologically acclimate to changing osmolarity by altering their transcriptome. Here, we investigated the transcriptomic changes of Gracilaria changii (B. M. Xia et I. A. Abbott) I. A. Abbott, J. Zhang et B. M. Xia in response to hyper- and hypoosmotic stresses using a cDNA microarray approach. Microarray analysis revealed that 199 and 200 genes from ∼3,300 genes examined were up- and down-regulated by >2-fold in seaweed samples treated at 50 parts per thousand (ppt) artificial seawater (ASW) compared with those at 30 ppt ASW, respectively. The number of genes that were up- and down-regulated by >2-fold in seaweed samples treated at 10 ppt ASW compared with those at 30 ppt ASW were 154 and 187, respectively. A majority of these genes were only differentially expressed under hyper- or hypoosmotic conditions, whereas 67 transcripts were affected by both stresses. The findings of this study have shed light on the expression profiles of many transcripts during the acclimation of G. changii to hyperosmotic and hypoosmotic conditions. This information may assist in the prioritization of genes to be examined in future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA