Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3244, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332164

RESUMO

Target identification is a crucial step in elucidating the mechanisms by which functional food components exert their functions. Here, we identified the G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) as a target of the triterpenoid mogrol, a class of aglycone mogroside derivative from Siraitia grosvenorii. Mogrol, but not mogrosides, activated cAMP-response element-mediated transcription in a TGR5-dependent manner. Additionally, mogrol selectively activated TGR5 but not the other bile acid-responsive receptors (i.e., farnesoid X receptor, vitamin D receptor, or muscarinic acetylcholine receptor M3). Several amino acids in TGR5 (L71A2.60, W75AECL1, Q77AECL1, R80AECL1, Y89A3.29, F161AECL2, L166A5.39, Y240A6.51, S247A6.58, Y251A6.62, L262A7.35, and L266A7.39) were found to be important for mogrol-induced activation. Mogrol activated insulin secretion under low-glucose conditions in INS-1 pancreatic ß-cells, which can be inhibited by a TGR5 inhibitor. Similar effects of mogrol on insulin secretion were observed in the isolated mouse islets. Mogrol administration partially but significantly alleviated hyperglycemia in KKAy diabetic mice by increasing the insulin levels without affecting the ß-cell mass or pancreatic insulin content. These results suggest that mogrol stimulates insulin secretion and alleviates hyperglycemia by acting as a TGR5 agonist.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Lanosterol , Fenantrenos , Animais , Camundongos , Ácidos e Sais Biliares , Diabetes Mellitus Experimental/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hiperglicemia/tratamento farmacológico , Insulina/metabolismo , Secreção de Insulina , Lanosterol/análogos & derivados , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
J Biochem ; 174(1): 21-31, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36762787

RESUMO

Lipocalin-type prostaglandin D synthase (L-PGDS) binds various hydrophobic small molecules. Since we aim to use human L-PGDS as a carrier in a drug delivery system (DDS) for poorly water-soluble drugs, quality control of the protein is indispensable. In this study, we investigated the thermodynamic stability of human L-PGDS under various pH conditions. Differential scanning calorimetry revealed that the thermal unfolding of L-PGDS was an almost-reversible two-state transition between the native and unfolded states over the pH range from 2.5 to 7.4. The linear relationship of ΔH(Tm) to Tm in this pH range gave a heat capacity change (ΔCp) of 4.76 kJ/(K·mol), which was small compared to those commonly found in globular proteins. The temperature-dependent free energy of unfolding, ΔG(T), specified by Tm, ΔH(Tm) and ΔCp, showed a pH dependence with the highest value at pH 7.4 closest to the isoelectric point of 8.3. The small value of Cp resulted in a large value of ΔG(T), which contributed to the stability of the protein. Taken together, these results demonstrated that human L-PGDS is sufficiently thermostable for storage and practical use and can be useful as a delivery vehicle of protein-based DDS.


Assuntos
Oxirredutases Intramoleculares , Lipocalinas , Humanos , Termodinâmica , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/química , Lipocalinas/metabolismo , Concentração de Íons de Hidrogênio
3.
NPJ Sci Food ; 6(1): 4, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031622

RESUMO

The identification of molecular targets of bioactive food components is important to understand the mechanistic aspect of their physiological functions. Here, we have developed a screening system that enables us to determine the activation of G protein-coupled receptors (GPCRs) by food components and have identified GPR55 as a target for curcumin. Curcumin activated GPR55 and induced serum-response element- and serum-response factor-mediated transcription, which were inhibited by Rho kinase and GPR55 antagonists. Both the methoxy group and the heptadienone moiety of curcumin were required for GPR55 activation. The F1905.47 residue of GPR55 was important for the interaction with curcumin. The curcumin-induced secretion of glucagon-like peptide-1 in GLUTag cells was inhibited by a GPR55 antagonist. These results indicate that expression screening is a useful system to identify GPCRs as targets of food components and strongly suggest that curcumin activates GPR55 as an agonist, which is involved in the physiological function of curcumin.

4.
Metallomics ; 13(12)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34791391

RESUMO

Fe(II) exported from cells is oxidized to Fe(III), possibly by a multicopper ferroxidase (MCF) such as ceruloplasmin (CP), to efficiently bind with the plasma iron transport protein transferrin (TF). As unbound Fe(III) is highly insoluble and reactive, its release into the blood during the transfer from MCF to TF must be prevented. A likely mechanism for preventing the release of unbound Fe(III) is via direct interaction between MCF and TF; however, the occurrence of this phenomenon remains controversial. This study aimed to reveal the interaction between these proteins, possibly mediated by zinc. Using spectrophotometry, isothermal titration calorimetry, and surface plasmon resonance methods, we found that Zn(II)-bound CP bound to iron-free TF (apo-TF) with a Kd of 4.2 µM and a stoichiometry CP:TF of ∼2:1. Computational modeling of the complex between CP and apo-TF predicted that each of the three Zn(II) ions that bind to CP further binds to an acidic amino acid residue of apo-TF to play a role as a cross-linker connecting both proteins. Domain 4 of one CP molecule and domain 6 of the other CP molecule fit tightly into the clefts in the N- and C-lobes of apo-TF, respectively. Upon the binding of two Fe(III) ions to apo-TF, the resulting diferric TF [Fe(III)2TF] dissociated from CP by conformational changes in TF. In human blood plasma, zinc deficiency reduced the production of Fe(III)2TF and concomitantly increased the production of non-TF-bound iron. Our findings suggest that zinc may be involved in the transfer of iron between CP and TF.


Assuntos
Apoproteínas/metabolismo , Ceruloplasmina/metabolismo , Compostos Férricos/metabolismo , Transferrina/metabolismo , Zinco/metabolismo , Cátions , Ligação Proteica
5.
ChemMedChem ; 12(20): 1715-1722, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28891271

RESUMO

With the objective of improving the poor water solubility of the potent antitumor compound SN-38, 10-O-substituted SN-38 derivatives were developed by the introduction of fluoroalkyl, fluorobenzoyl, or bromobenzoyl groups. The 10-O-fluoropropyl-substituted compound 2 {(S)-4,11-diethyl-9-(3-fluoropropoxy)-4-hydroxy-1H-pyrano[3',4':6,7]indolizino[1,2-b]quinoline-3,14(4H,12H)-dione} was found to be 17-fold more soluble than SN-38 in phosphate-buffered saline, and it exhibited a level of biological activity ≈50 % that of SN-38 in a cytotoxicity assay using the prostate cancer cell line PC-3. Five other derivatives did not show solubility improvements to the same extent, but their activities in cytotoxicity assays were nearly the same as that of SN-38. In vivo studies of 2 with PC-3 tumor-bearing mice revealed that it has higher antitumor activity than SN-38, even at lower dosage. These results will promote the medicinal chemistry application of 10-O-modifications of SN-38 and help reestablish the potential this drug. Furthermore, the inclusion of fluoro and bromo substituents means that the synthetic strategy developed here may be used to obtain 18 F- or 76 Br-labeled SN-38 derivatives for in vivo positron emission tomography studies.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Animais , Camptotecina/química , Humanos , Irinotecano , Masculino , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Relação Estrutura-Atividade
6.
Mol Pharm ; 14(10): 3558-3567, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28829147

RESUMO

Low water solubility of candidate drug compounds is a major problem in pharmaceutical research and development. We developed a novel drug delivery system (DDS) for poorly water-soluble drugs using lipocalin-type prostaglandin D synthase (L-PGDS), which belongs to the lipocalin superfamily and binds a large variety of hydrophobic molecules. In this study, we comprehensively evaluated the capability of L-PGDS to bind and solubilize various poorly water-soluble drugs using structure-based docking. Docking simulations of 2892 commercially available approved drugs indicated that L-PGDS shows higher binding affinities for various drugs compared with 2-hydroxypropyl-ß-cyclodextrin. Five drugs selected from the top 100 with the highest binding affinities for L-PGDS exhibited very low solubility in PBS (pH 7.4). However, in the presence of 1 mM L-PGDS, the apparent solubility of all drugs improved markedly, from 19.5- to 166-fold. Calorimetric experiments on two drugs, telmisartan and imatinib, revealed that L-PGDS forms a 1:2 complex with each drug, with dissociation constants of 0.4-40.0 µM. Kinetic simulations of drug dissolution with L-PGDS indicated that the difference in free energy change (ΔΔG) between the insoluble state and the L-PGDS-bound state are within the range from -10 to +5 kJ mol-1. The ΔΔG value is a critical factor in evaluating whether a poorly water-soluble drug can be solubilized by L-PGDS. Collectively, these results demonstrate that in silico docking is a promising approach for identifying drug molecules suitable for the L-PGDS-based DDS.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Oxirredutases Intramoleculares/química , Lipocalinas/química , Simulação de Acoplamento Molecular , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzoatos/química , Benzoatos/farmacocinética , Calorimetria/métodos , Química Farmacêutica , Humanos , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacocinética , Ligação Proteica , Proteínas Recombinantes/química , Solubilidade , Telmisartan , Água/química
7.
FEBS Lett ; 588(6): 962-9, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24530534

RESUMO

The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the classical hydrophobic effect was mostly detected, all complex formations were driven by favorable enthalpic gains. Gibbs energy changes strongly correlated with the number of hydrogen bond acceptors of ligand. Thus, the broad binding capability of L-PGDS for ligands should be viewed as hydrophilic interactions delicately tuned by enthalpy-entropy compensation using combined effects of hydrophilic and hydrophobic interactions.


Assuntos
Oxirredutases Intramoleculares/química , Lipocalinas/química , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/química , Substituição de Aminoácidos , Bilirrubina/química , Biliverdina/química , Domínio Catalítico , Hormônios Gonadais/química , Hemina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxirredutases Intramoleculares/genética , Ligantes , Lipocalinas/genética , Naftalenossulfonatos/química , Ligação Proteica , Esteroides/química , Termodinâmica , Hormônios Tireóideos/química , Tretinoína/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA