Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12560-12568, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38700899

RESUMO

Spin in semiconductors facilitates magnetically controlled optoelectronic and spintronic devices. In metal halide perovskites (MHPs), doping magnetic ions is proven to be a simple and efficient approach to introducing a spin magnetic momentum. In this work, we present a facile metal ion doping protocol through the vapor-phase metal halide insertion reaction to the chemical vapor deposition (CVD)-grown ultrathin Cs3BiBr6 perovskites. The Fe-doped bismuth halide (Fe:CBBr) perovskites demonstrate that the iron spins are successfully incorporated into the lattice, as revealed by the spin-phonon coupling below the critical temperature Tc around 50 K observed through temperature-dependent Raman spectroscopy. Furthermore, the phonons exhibit significant softening under an applied magnetic field, possibly originating from magnetostriction and spin exchange interaction. The spin-phonon coupling in Fe:CBBr potentially provides an efficient way to tune the spin and lattice parameters for halide perovskite-based spintronics.

2.
ACS Nano ; 18(18): 11717-11731, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38651873

RESUMO

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM), which has an inherent ability to image biological samples without harsh labeling methods while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources, such as cancer cells, normal cells, immortalized cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366 ± 0.2, and the average equivalent diameter was 132.43 ± 67 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical, rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution images of EVs and offer insights into their potential biological impact.


Assuntos
Microscopia Crioeletrônica , Vesículas Extracelulares , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Redes Neurais de Computação , Microscopia Eletrônica de Transmissão , Processamento de Imagem Assistida por Computador/métodos
3.
Nano Lett ; 24(17): 5182-5188, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630435

RESUMO

Bismuth halide perovskites are widely regarded as nontoxic alternatives to lead halide perovskites for optoelectronics and solar energy harvesting applications. With a tailorable composition and intriguing optical properties, bismuth halide perovskites are also promising candidates for tunable photonic devices. However, robust control of the anion composition in bismuth halide perovskites remains elusive. Here, we established chemical vapor deposition and anion exchange protocols to synthesize bismuth halide perovskite nanoflakes with controlled dimensions and variable compositions. In particular, we demonstrated the gradient bromide distribution by controlling the anion exchange and diffusion processes, which is spatially resolved by time-of-flight secondary ion mass spectrometry. Moreover, the optical waveguiding properties of bismuth halide perovskites can be modulated by flake thicknesses and anion compositions. With a unique gradient anion distribution and controllable optical properties, bismuth halide perovskites provide new possibilities for applications in optoelectronic devices and integrated photonics.

4.
ACS Energy Lett ; 8(10): 3999-4007, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854047

RESUMO

Reversible proton-conducting solid oxide cells (R-PSOCs) have the potential to be the most efficient and cost-effective electrochemical device for energy storage and conversion. A breakthrough in air electrode material development is vital to minimizing the energy loss and degradation of R-PSOCs. Here we report a class of triple-conducting air electrode materials by judiciously doping transition- and rare-earth metal ions into a proton-conducting electrolyte material, which demonstrate outstanding activity and durability for R-PSOC applications. The optimized composition Ba0.9Pr0.1Hf0.1Y0.1Co0.8O3-δ (BPHYC) consists of three phases, which have a synergistic effect on enhancing the performance, as revealed from electrochemical analysis and theoretical calculations. When applied to R-PSOCs operated at 600 °C, a peak power density of 1.37 W cm-2 is demonstrated in the fuel cell mode, and a current density of 2.40 A cm-2 is achieved at a cell voltage of 1.3 V in the water electrolysis mode under stable operation for hundreds of hours.

6.
ACS Appl Mater Interfaces ; 15(33): 39980-39988, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555428

RESUMO

Diamond surface functionalization has received significant research interest recently. Specifically, H-termination has been widely adopted because it endows the diamond surface with negative electron affinity and the hole carrier is injected in the presence of surface transfer dopants. Exploring different functional groups' attachment on diamond surfaces and their impact on the electronic structure, using wet and dry chemical approaches, would hence be of interest in engineering diamond as a semiconductor. Here, we report the functionalization of the H-terminated diamond surface with nitrogen and sulfur heteroatoms. Surface characterization of functionalized diamond surfaces shows that these groups are well-distributed and covalently bonded to diamonds. Four chemical functional groups (-SH, -S-S-, -S-O, and -S=O) were found on the sulfurized diamond surface, and two groups (-NH2 and =NH) upon amination. We also report co-functionalization of surface with N and S (N-S), where sulfurization promotes sequential amination efficiency with reduced exposure time. Electrical measurement shows that heteroatom-modified diamond surfaces possess higher conductivity than H-terminated diamonds. Density functional theory (DFT) shows that upon functionalization with various N/S ratios, the conduction band minimum and valence band maximum downshift, which lowers the bandgap in comparison to an H-terminated diamond. These observations suggest the possibility of heteroatom functionalizations with enhanced surface electrical conductivity on the diamond that are useful for various electronic applications.

7.
ACS Appl Mater Interfaces ; 15(23): 28636-28648, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265339

RESUMO

The most effective antifouling coatings are designed to slowly release biocides that target a broad spectrum of marine organisms. However, as biocides have a deleterious effect on marine life, there is demand for environmentally friendly coatings that resist fouling through physical interactions. We propose a simple platform for the development of such coatings based on bottlebrush-modified elastomers. The bottlebrush additives were synthesized to have side chain chemistries that are known to be fouling-resistant, and these were incorporated in a commercial elastomer through blending and/or covalent attachment. The fouling performance of these coatings was highly variable, with area coverages of hard and soft foulants ranging from 1.4% to 7.2% and 29.1% to 64.0%, respectively, across a set of eight materials. The origin of these differences was explained by examining the structure of the coating surface through chemical imaging by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and topographic imaging by atomic force microscopy (AFM). We found that fouling by certain soft and hard fouling organisms was primarily influenced by surface composition, which was controlled by both the chemistry and loading level of the bottlebrush additive, and was independent of the inherent surface roughness. While no type of coating could resist all soft and hard foulants, a formulation based on a bottlebrush copolymer additive with both siloxane and fluorinated monomers was effective against nearly all organisms encountered in the study.

8.
Langmuir ; 39(20): 7201-7211, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172215

RESUMO

We developed "reactive" bottlebrush polymers based on styrene (S) and t-butyl acrylate (tBA) as additives for polystyrene (PS) coatings. The bottlebrush polymers spontaneously bloom to both the air and substrate interfaces during solution casting. While neat PS films are hydrophobic and poorly adhere to the native oxide on clean silicon wafers, the hydrophilicity and substrate adherence of bottlebrush-incorporating PS films can be tailored through the thermally activated deprotection of tBA to produce acrylic acid (AA) and acrylic anhydride (AH). A critical design parameter is the manner by which tBA is incorporated into the bottlebrush: When the bottlebrush side chains are copolymers of S and tBA, the extent of deprotection is extremely low, even after prolonged thermal annealing at elevated temperature. However, when the bottlebrush contains a mixture of poly(t-butyl acrylate) (PtBA) and PS side chains, nearly all tBA is converted to AA and AH. Consequently, using the "mixed-chain" bottlebrush design with thermal processing and appropriate conditioning, the water contact angle is reduced from over 90° on unmodified PS down to 75° on bottlebrush-incorporating PS films, and the substrate adherence is improved in proportion to the extent of tBA deprotection.

9.
Nat Biomed Eng ; 7(7): 867-886, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37106151

RESUMO

Screening implantable biomaterials for antifibrotic properties is constrained by the need for in vivo testing. Here we show that the throughput of in vivo screening can be increased by cellularly barcoding a chemically modified combinatorial library of hydrogel formulations. The method involves the implantation of a mixture of alginate formulations, each barcoded with human umbilical vein endothelial cells from different donors, and the association of the identity and performance of each formulation by genotyping single nucleotide polymorphisms of the cells via next-generation sequencing. We used the method to screen 20 alginate formulations in a single mouse and 100 alginate formulations in a single non-human primate, and identified three lead hydrogel formulations with antifibrotic properties. Encapsulating human islets with one of the formulations led to long-term glycaemic control in a mouse model of diabetes, and coating medical-grade catheters with the other two formulations prevented fibrotic overgrowth. High-throughput screening of barcoded biomaterials in vivo may help identify formulations that enhance the long-term performance of medical devices and of biomaterial-encapsulated therapeutic cells.


Assuntos
Alginatos , Hidrogéis , Camundongos , Animais , Alginatos/química , Hidrogéis/química , Células Endoteliais , Primatas , Materiais Biocompatíveis/química
10.
Adv Mater ; 35(21): e2205709, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36871193

RESUMO

Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.


Assuntos
Corpos Estranhos , Reação a Corpo Estranho , Humanos , Camundongos , Animais , Materiais Biocompatíveis/química , Fibrose , Lipídeos
11.
Nat Commun ; 14(1): 397, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693860

RESUMO

Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.

12.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168235

RESUMO

Evaluating the heterogeneity of extracellular vesicles (EVs) is crucial for unraveling their complex actions and biodistribution. Here, we identify consistent architectural heterogeneity of EVs using cryogenic transmission electron microscopy (cryo-TEM) which has an inherent ability to image biological samples without harsh labeling methods and while preserving their native conformation. Imaging EVs isolated using different methodologies from distinct sources such as cancer cells, normal cells, and body fluids, we identify a structural atlas of their dominantly consistent shapes. We identify EV architectural attributes by utilizing a segmentation neural network model. In total, 7,576 individual EVs were imaged and quantified by our computational pipeline. Across all 7,576 independent EVs, the average eccentricity was 0.5366, and the average equivalent diameter was 132.43 nm. The architectural heterogeneity was consistent across all sources of EVs, independent of purification techniques, and compromised of single spherical (S. Spherical), rod-like or tubular, and double shapes. This study will serve as a reference foundation for high-resolution EV images and offer insights into their potential biological impact.

13.
Science ; 377(6613): 1425-1430, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137050

RESUMO

Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.

14.
Clin Exp Dent Res ; 8(6): 1591-1597, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36102230

RESUMO

OBJECTIVES: To evaluate intermediate treatments between sodium hypochlorite and chlorhexidine gluconate irrigations for the prevention of a toxic brown precipitate in root canal therapy. MATERIALS AND METHODS: Thirty-nine premolars were irrigated with 6% sodium hypochlorite and divided into either: No intermediate treatment; Dry paper points; three different irrigations with 17% ethylenediaminetetraacetic acid, deionized water, or 5% sodium thiosulfate. 2% chlorhexidine gluconate was the final irrigant in all groups. Sectioned teeth were analyzed for brown precipitate intensity and area using stereomicroscopy and components related to para-chloroaniline using Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). RESULTS: Stereomicroscopy showed that 5% STS significantly reduced brown precipitate intensity and area as compared with no intermediate irrigation (p < .05, Chi-square, generalized linear model, and Tukey's multiple comparison tests). Utilizing ToF-SIMS, 5% sodium thiosulfate was most effective in reducing the components representing para-chloroaniline and chlorhexidine gluconate. CONCLUSION: The 5% sodium thiosulfate was most effective among other intermediate treatments, assessed by stereomicroscopy and ToF-SIMS.


Assuntos
Irrigantes do Canal Radicular , Hipoclorito de Sódio , Precipitação Química
15.
Angew Chem Int Ed Engl ; 61(41): e202210434, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947114

RESUMO

We report a method to prepare core-shell zeolite beta (*BEA) with an aluminous core and an epitaxial Si-rich shell. This method capitalizes on the inherent defects in *BEA crystals to simultaneously passivate acid sites on external surfaces and increase intracrystalline mesoporosity through facile post-hydrothermal synthesis modification in alkaline media. This process creates more hydrophobic materials by reducing silanol defects and enriching the shell in silica via a combination of dealumination and the relocation of silica from the core to the shell during intracrystalline mesopore formation. The catalytic consequences of *BEA core-shells relative to conventional analogues were tested using the biomass conversion of levulinic acid and n-butanol to n-butyl levulinate as a benchmark reaction. Our findings reveal that siliceous shells and intracrystalline mesopores synergistically enhance the performance of *BEA catalysts.

16.
Nat Commun ; 13(1): 2854, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35606382

RESUMO

All-solid-state sodium batteries (ASSSBs) are promising candidates for grid-scale energy storage. However, there are no commercialized ASSSBs yet, in part due to the lack of a low-cost, simple-to-fabricate solid electrolyte (SE) with electrochemical stability towards Na metal. In this work, we report a family of oxysulfide glass SEs (Na3PS4-xOx, where 0 < x ≤ 0.60) that not only exhibit the highest critical current density among all Na-ion conducting sulfide-based SEs, but also enable high-performance ambient-temperature sodium-sulfur batteries. By forming bridging oxygen units, the Na3PS4-xOx SEs undergo pressure-induced sintering at room temperature, resulting in a fully homogeneous glass structure with robust mechanical properties. Furthermore, the self-passivating solid electrolyte interphase at the Na|SE interface is critical for interface stabilization and reversible Na plating and stripping. The new structural and compositional design strategies presented here provide a new paradigm in the development of safe, low-cost, energy-dense, and long-lifetime ASSSBs.

18.
J Chem Phys ; 156(9): 094707, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259895

RESUMO

Surface morphology, in addition to hydrophobic and electrostatic effects, can alter how proteins interact with solid surfaces. Understanding the heterogeneous dynamics of protein adsorption on surfaces with varying roughness is experimentally challenging. In this work, we use single-molecule fluorescence microscopy to study the adsorption of α-lactalbumin protein on the glass substrate covered with a self-assembled monolayer (SAM) with varying surface concentrations. Two distinct interaction mechanisms are observed: localized adsorption/desorption and continuous-time random walk (CTRW). We investigate the origin of these two populations by simultaneous single-molecule imaging of substrates with both bare glass and SAM-covered regions. SAM-covered areas of substrates are found to promote CTRW, whereas glass surfaces promote localized motion. Contact angle measurements and atomic force microscopy imaging show that increasing SAM concentration results in both increasing hydrophobicity and surface roughness. These properties lead to two opposing effects: increasing hydrophobicity promotes longer protein flights, but increasing surface roughness suppresses protein dynamics resulting in shorter residence times. Our studies suggest that controlling hydrophobicity and roughness, in addition to electrostatics, as independent parameters could provide a means to tune desirable or undesirable protein interactions with surfaces.

19.
ACS Appl Mater Interfaces ; 14(10): 12824-12835, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245016

RESUMO

The template-free unidirectional alignment of lamellar block copolymers (l-BCPs) for sub-10 nm high-resolution patterning and hybrid multicomponent nanostructures is important for technological applications. We demonstrate a modified soft-shear-directed self-assembly (SDSA) approach for aligning pristine l-BCPs and l-BCPs with incorporated polymer-grafted nanoparticles (PGNPs), as well as the l-BCP conversion to aligned gold nanowires, and hybrid of metallic gold nanowire and dielectric silica nanoparticle in the form of line-dot nanostructures. The smallest patterns have a half-pitch as small as 9.8 nm. In all cases, soft-shear is achieved using a high-molecular-mass polymer topcoat layer, with support on a neutral bottom layer. We also show that the hybrid line-dot nanostructures have a red-shifted plasmonic response in comparison to neat gold nanowires. These template-free aligned BCPs and nanowires have potential use in nanopatterning applications, and the line-dot nanostructures should be useful in the sensing of biomolecules and other molecular species based on the plasmonic response of the nanowires.

20.
Adv Mater ; 34(13): e2109442, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35088918

RESUMO

Microbial bioelectronic devices integrate naturally occurring or synthetically engineered electroactive microbes with microelectronics. These devices have a broad range of potential applications, but engineering the biotic-abiotic interface for biocompatibility, adhesion, electron transfer, and maximum surface area remains a challenge. Prior approaches to interface modification lack simple processability, the ability to pattern the materials, and/or a significant enhancement in currents. Here, a novel conductive polymer coating that significantly enhances current densities relative to unmodified electrodes in microbial bioelectronics is reported. The coating is based on a blend of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) crosslinked with poly(2-hydroxyethylacrylate) (PHEA) along with a thin polydopamine (PDA) layer for adhesion to an underlying indium tin oxide (ITO) electrode. When used as an interface layer with the current-producing bacterium Shewanella oneidensis MR-1, this material produces a 178-fold increase in the current density compared to unmodified electrodes, a current gain that is higher than previously reported thin-film 2D coatings and 3D conductive polymer coatings. The chemistry, morphology, and electronic properties of the coatings are characterized and the implementation of these coated electrodes for use in microbial fuel cells, multiplexed bioelectronic devices, and organic electrochemical transistor based microbial sensors are demonstrated. It is envisioned that this simple coating will advance the development of microbial bioelectronic devices.


Assuntos
Eletrônica , Polímeros , Condutividade Elétrica , Eletrodos , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA