Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 17(1): 73, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374048

RESUMO

BACKGROUND: Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. METHODS: Here, we examine single and co-infection of Mayaro virus (D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27 °C) and hot (32 °C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. RESULTS: Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes with a tendency for higher titers in co-infected mosquitoes at both temperatures, and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs. single infections and was more evident at earlier time points (7 vs. 14 days post infection) for Mayaro. The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. CONCLUSIONS: Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses. However, more studies are necessary to clarify the role of co-infection at different temperature regimes, including under more natural temperature settings.


Assuntos
Aedes , Alphavirus , Coinfecção , Vírus da Dengue , Dengue , Flavivirus , Animais , Humanos , Temperatura , Mosquitos Vetores , Alphavirus/genética , Flavivirus/genética
2.
J Virol ; 97(12): e0069523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38051046

RESUMO

IMPORTANCE: Relative humidity (RH) is an environmental variable that affects mosquito physiology and can impact pathogen transmission. Low RH can induce dehydration in mosquitoes, leading to alterations in physiological and behavioral responses such as blood-feeding and host-seeking behavior. We evaluated the effects of a temporal drop in RH (RH shock) on mortality and Mayaro virus vector competence in Ae. aegypti. While dehydration induced by humidity shock did not impact virus infection, we detected a significant effect of dehydration on mosquito mortality and blood-feeding frequency, which could significantly impact transmission dynamics.


Assuntos
Aedes , Alphavirus , Mosquitos Vetores , Animais , Aedes/fisiologia , Aedes/virologia , Alphavirus/fisiologia , Desidratação
3.
Integr Comp Biol ; 63(6): 1550-1563, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37742320

RESUMO

In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR-Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control's main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.


Assuntos
Artrópodes , Sistemas CRISPR-Cas , Feminino , Animais , Artrópodes/genética , Ovário , Mosquitos Vetores , Células Germinativas
4.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292724

RESUMO

Increasing global temperatures and unpredictable climatic extremes have contributed to the spread of vector-borne diseases. The mosquito Aedes aegypti is the main vector of multiple arboviruses that negatively impact human health, mostly in low socioeconomic areas of the world. Co-circulation and co-infection of these viruses in humans have been increasingly reported; however, how vectors contribute to this alarming trend remains unclear. Here, we examine single and co-infection of Mayaro virus (-D strain, Alphavirus) and dengue virus (serotype 2, Flavivirus) in Ae. aegypti adults and cell lines at two constant temperatures, moderate (27°C) and hot (32°C), to quantify vector competence and the effect of temperature on infection, dissemination and transmission, including on the degree of interaction between the two viruses. Both viruses were primarily affected by temperature but there was a partial interaction with co-infection. Dengue virus quickly replicates in adult mosquitoes, with a tendency for higher titers in co-infected mosquitoes at both temperatures and mosquito mortality was more severe at higher temperatures in all conditions. For dengue, and to a lesser extent Mayaro, vector competence and vectorial capacity were higher at hotter temperature in co- vs single infections and was more evident at earlier timepoints (7 vs 14 days post infection). The temperature-dependent phenotype was confirmed in vitro by faster cellular infection and initial replication at higher temperatures for dengue but not for Mayaro virus. Our study suggests that contrasting kinetics of the two viruses could be related to their intrinsic thermal requirements, where alphaviruses thrive better at lower temperatures compared to flaviviruses, but further studies are necessary to clarify the role of co-infection at different and variable temperature regimes.

5.
Nat Commun ; 14(1): 191, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635291

RESUMO

The core components of CRISPR-based gene drives, Cas9 and guide RNA (gRNA), either can be linked within a self-contained single cassette (full gene-drive, fGD) or be provided in two separate elements (split gene-drive, sGD), the latter offering greater control options. We previously engineered split systems that could be converted genetically into autonomous full drives. Here, we examine such dual systems inserted at the spo11 locus that are recoded to restore gene function and thus organismic fertility. Despite minimal differences in transmission efficiency of the sGD or fGD drive elements in single generation crosses, the reconstituted spo11 fGD cassette surprisingly exhibits slower initial drive kinetics than the unlinked sGD element in multigenerational cage studies, but then eventually catches up to achieve a similar level of final introduction. These unexpected kinetic behaviors most likely reflect differing transient fitness costs associated with individuals co-inheriting Cas9 and gRNA transgenes during the drive process.


Assuntos
Sistemas CRISPR-Cas , Fertilidade , Sistemas CRISPR-Cas/genética , Fenótipo , Transgenes , Animais
6.
J Virol ; 97(1): e0177822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598200

RESUMO

Globalization and climate change have contributed to the simultaneous increase and spread of arboviral diseases. Cocirculation of several arboviruses in the same geographic region provides an impetus to study the impacts of multiple concurrent infections within an individual vector mosquito. Here, we describe coinfection and superinfection with the Mayaro virus (Togaviridae, Alphavirus) and Zika virus (Flaviviridae, Flavivirus) in vertebrate and mosquito cells, as well as Aedes aegypti adult mosquitoes, to understand the interaction dynamics of these pathogens and effects on viral infection, dissemination, and transmission. Aedes aegypti mosquitoes were able to be infected with and transmit both pathogens simultaneously. However, whereas Mayaro virus was largely unaffected by coinfection, it had a negative impact on infection and dissemination rates for Zika virus compared to single infection scenarios. Superinfection of Mayaro virus atop a previous Zika virus infection resulted in increased Mayaro virus infection rates. At the cellular level, we found that mosquito and vertebrate cells were also capable of being simultaneously infected with both pathogens. Similar to our findings in vivo, Mayaro virus negatively affected Zika virus replication in vertebrate cells, displaying complete blocking under certain conditions. Viral interference did not occur in mosquito cells. IMPORTANCE Epidemiological and clinical studies indicate that multiple arboviruses are cocirculating in human populations, leading to some individuals carrying more than one arbovirus at the same time. In turn, mosquitoes can become infected with multiple pathogens simultaneously (coinfection) or sequentially (superinfection). Coinfection and superinfection can have synergistic, neutral, or antagonistic effects on viral infection dynamics and ultimately have impacts on human health. Here we investigate the interaction between Zika virus and Mayaro virus, two emerging mosquito-borne pathogens currently circulating together in Latin America and the Caribbean. We find a major mosquito vector of these viruses-Aedes aegypti-can carry and transmit both arboviruses at the same time. Our findings emphasize the importance of considering co- and superinfection dynamics during vector-pathogen interaction studies, surveillance programs, and risk assessment efforts in epidemic areas.


Assuntos
Aedes , Infecções por Alphavirus , Coinfecção , Superinfecção , Infecção por Zika virus , Animais , Humanos , Aedes/virologia , Alphavirus , Infecções por Alphavirus/complicações , Infecções por Alphavirus/virologia , Mosquitos Vetores/virologia , Vertebrados/virologia , Zika virus , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia
7.
Am J Trop Med Hyg ; 108(2): 412-423, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535260

RESUMO

Despite its ecological flexibility and geographical co-occurrence with human pathogens, little is known about the ability of Anopheles albimanus to transmit arboviruses. To address this gap, we challenged An. albimanus females with four alphaviruses and one flavivirus and monitored the progression of infections. We found this species is an efficient vector of the alphaviruses Mayaro virus, O'nyong-nyong virus, and Sindbis virus, although the latter two do not currently exist in its habitat range. An. albimanus was able to become infected with Chikungunya virus, but virus dissemination was rare (indicating the presence of a midgut escape barrier), and no mosquito transmitted. Mayaro virus rapidly established disseminated infections in An. albimanus females and was detected in the saliva of a substantial proportion of infected mosquitoes. Consistent with previous work in other anophelines, we find that An. albimanus is refractory to infection with flaviviruses, a phenotype that did not depend on midgut-specific barriers. Our work demonstrates that An. albimanus may be a vector of neglected emerging human pathogens and adds to recent evidence that anophelines are competent vectors for diverse arboviruses.


Assuntos
Alphavirus , Anopheles , Arbovírus , Vírus Chikungunya , Animais , Feminino , Humanos , Alphavirus/genética , Anopheles/genética , Mosquitos Vetores , Vírus Chikungunya/genética , Vírus O'nyong-nyong
9.
G3 (Bethesda) ; 12(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791161

RESUMO

Gene drives are programmable genetic elements that can spread beneficial traits into wild populations to aid in vector-borne pathogen control. Two different drives have been developed for population modification of mosquito vectors. The Reckh drive (vasa-Cas9) in Anopheles stephensi displays efficient allelic conversion through males but generates frequent drive-resistant mutant alleles when passed through females. In contrast, the AgNosCd-1 drive (nos-Cas9) in Anopheles gambiae achieves almost complete allelic conversion through both genders. Here, we examined the subcellular localization of RNA transcripts in the mosquito germline. In both transgenic lines, Cas9 is strictly coexpressed with endogenous genes in stem and premeiotic cells of the testes, where both drives display highly efficient conversion. However, we observed distinct colocalization patterns for the two drives in female reproductive tissues. These studies suggest potential determinants underlying efficient drive through the female germline. We also evaluated expression patterns of alternative germline genes for future gene-drive designs.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Animais , Anopheles/genética , Sistemas CRISPR-Cas , Feminino , Células Germinativas , Masculino , Mosquitos Vetores/genética
10.
Nat Commun ; 12(1): 1480, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674604

RESUMO

CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that are inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multigenerational cage trials, sGDs follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage and/or lethal/sterile mosaic Cas9-dependent phenotypes, leading to inherently confinable drive outcomes.


Assuntos
Drosophila/genética , Tecnologia de Impulso Genético/métodos , Edição de Genes/métodos , Alelos , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades , Drosophila melanogaster/genética , Feminino , Masculino , Reparo de DNA por Recombinação
11.
Nat Commun ; 11(1): 5553, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144570

RESUMO

Cas9/gRNA-mediated gene-drive systems have advanced development of genetic technologies for controlling vector-borne pathogen transmission. These technologies include population suppression approaches, genetic analogs of insecticidal techniques that reduce the number of insect vectors, and population modification (replacement/alteration) approaches, which interfere with competence to transmit pathogens. Here, we develop a recoded gene-drive rescue system for population modification of the malaria vector, Anopheles stephensi, that relieves the load in females caused by integration of the drive into the kynurenine hydroxylase gene by rescuing its function. Non-functional resistant alleles are eliminated via a dominantly-acting maternal effect combined with slower-acting standard negative selection, and rare functional resistant alleles do not prevent drive invasion. Small cage trials show that single releases of gene-drive males robustly result in efficient population modification with ≥95% of mosquitoes carrying the drive within 5-11 generations over a range of initial release ratios.


Assuntos
Anopheles/genética , Malária/parasitologia , Alelos , Animais , Proteína 9 Associada à CRISPR/metabolismo , Feminino , Genética Populacional , Proteínas de Fluorescência Verde/metabolismo , Heterozigoto , Padrões de Herança/genética , Quinurenina 3-Mono-Oxigenase/genética , Masculino , Modelos Genéticos , Mosaicismo , Fenótipo , Filogenia , RNA Guia de Cinetoplastídeos/metabolismo
12.
Glob Public Health ; 15(10): 1551-1565, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589115

RESUMO

Information about genetic engineering (GE) for vector control in the United States is disseminated primarily in English, though non-English speakers are equally, and in some geographic regions even more affected by such technologies. Non-English-speaking publics should have equal access to such information, which is especially critical when the technology in question may impact whole communities. We convened an interdisciplinary workgroup to translate previously developed narrated slideshows on gene drive mosquitoes from English into Spanish, reviewing each iteration for scientific accuracy and accessibility to laypeople. Using the finalised stimuli, we conducted five online, chat-based focus groups with Spanish-speaking adults from California. Overall, participants expressed interest in the topic and were able to summarise the information presented in their own words. Importantly, participants asked for clarification and expressed scepticism about the information presented, indicating critical engagement with the material. Through collaboration with Spanish-speaking scientists engaged in the development of GE methods of vector control, we translated highly technical scientific information into Spanish that successfully engaged Spanish-speaking participants in conversations about this topic. In this manuscript, we document the feasibility of consulting Spanish-speaking publics about a complex emerging technology by drawing on the linguistic diversity of the scientific teams developing the technology.


Assuntos
Tecnologia de Impulso Genético , Tradução , Adulto , Animais , Participação da Comunidade , Hispânico ou Latino/psicologia , Hispânico ou Latino/estatística & dados numéricos , Humanos , Linguística , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Participação dos Interessados , Estados Unidos
13.
BMC Infect Dis ; 19(1): 580, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272403

RESUMO

BACKGROUND: Transcriptomic profiling has generated extensive lists of genes that respond to viral infection in mosquitoes. These gene lists contain two types of genes; (1) those that are responsible for the insect's natural antiviral defense mechanisms, including some known innate immunity genes, and (2) genes whose change in expression may occur simply as a result of infection. As genetic modification tools for mosquitoes continue to improve, the opportunities to make refractory insects via allelic replacement or delivery of small RNAs that alter gene expression are expanding. Therefore, the ability to identify which genes in transcriptional profiles may have immune function has increasing value. Arboviruses encounter a range of mosquito tissues and physiologies as they traverse from the midgut to the salivary glands. While the midgut is well-studied as the primary tissue barrier, antiviral genes expressed in the subsequent tissues of the carcass offer additional candidates for second stage intervention in the mosquito body. METHODS: Mosquito lines collected recently from field populations exhibit natural genetic variation for dengue virus susceptibility. We sought to use a modified full-sib breeding design to identify mosquito families that varied in their dengue viral load in their bodies post infection. RESULTS: By delivering virus intrathoracically, we bypassed the midgut and focused on whole body responses in order to evaluate carcass-associated refractoriness. We tested 25 candidate genes selected for their appearance in multiple published transcriptional profiles and were able to identify 12 whose expression varied with susceptibility in the genetic families. CONCLUSIONS: This method, using natural genetic variation, offers a simple means to screen and reduce candidate gene lists prior to carrying out more labor-intensive functional studies. The extracted RNA from the females across the families represents a storable resource that can be used to screen subsequent candidate genes in the future. The aspect of vector competence being assessed could be varied by focusing on different tissues or time points post infection.


Assuntos
Aedes/virologia , Vírus da Dengue/genética , Dengue/virologia , Variação Genética , Imunidade Inata/genética , Mosquitos Vetores/virologia , Animais , Vírus da Dengue/isolamento & purificação , Feminino , Perfilação da Expressão Gênica , Masculino , Carga Viral
14.
Cell Rep ; 26(3): 529-535.e3, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650347

RESUMO

Wolbachia-infected mosquitoes are refractory to super-infection with arthropod-borne pathogens, but the role of host cell signaling proteins in pathogen-blocking mechanisms remains to be elucidated. Here, we use an antibody microarray approach to provide a comprehensive picture of the signaling response of Aedes aegypti-derived cells to Wolbachia. This approach identifies the host cell insulin receptor as being downregulated by the bacterium. Furthermore, siRNA-mediated knockdown and treatment with a small-molecule inhibitor of the insulin receptor kinase concur to assign a crucial role for this enzyme in the replication of dengue and Zika viruses in cultured mosquito cells. Finally, we show that the production of Zika virus in Wolbachia-free live mosquitoes is impaired by treatment with the selective inhibitor mimicking Wolbachia infection. This study identifies Wolbachia-mediated downregulation of insulin receptor kinase activity as a mechanism contributing to the blocking of super-infection by arboviruses.


Assuntos
Vírus da Dengue/patogenicidade , Receptor de Insulina/uso terapêutico , Wolbachia/química , Zika virus/patogenicidade , Animais , Culicidae , Receptor de Insulina/farmacologia
15.
Parasit Vectors ; 10(1): 622, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29282144

RESUMO

BACKGROUND: The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. METHODS: We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. RESULTS: We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). CONCLUSIONS: In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.


Assuntos
Aedes/microbiologia , Aedes/virologia , Antibiose , Vírus da Dengue/crescimento & desenvolvimento , Wolbachia/fisiologia , Animais , Vírus da Dengue/isolamento & purificação , Carga Viral
16.
Curr Opin Insect Sci ; 22: 37-44, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28805637

RESUMO

Viruses transmitted by mosquitoes such as dengue, Zika and West Nile cause a threat to global health due to increased geographical range and frequency of outbreaks. The bacterium Wolbachia pipientis may be the solution reducing disease transmission. Though commonly missing in vector species, the bacterium was artificially and stably introduced into Aedes aegypti to assess its potential for biocontrol. When infected with Wolbachia, mosquitoes become refractory to infection by a range of pathogens, including the aforementioned viruses. How the bacterium is conferring this phenotype remains unknown. Here we discuss current hypotheses in the field for the mechanistic basis of pathogen blocking and evaluate the evidence from mosquitoes and related insects.


Assuntos
Aedes/virologia , Wolbachia/fisiologia , Aedes/microbiologia , Animais , Infecções por Arbovirus/prevenção & controle , Infecções por Arbovirus/transmissão , Arbovírus/fisiologia , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mosquitos Vetores/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Controle Biológico de Vetores/métodos
17.
Sci Rep ; 7: 43847, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262718

RESUMO

Wolbachia pipientis is an insect endosymbiont known to limit the replication of viruses including dengue and Zika in their primary mosquito vector, Aedes aegypti. Wolbachia is being released into mosquito populations globally in a bid to control the diseases caused by these viruses. It is theorized that Wolbachia's priming of the insect immune system may confer protection against subsequent viral infection. Other hypotheses posit a role for competition between Wolbachia and viruses for host cellular resources. Using an A. aegypti cell line infected with Wolbachia, we tested the effects of targeting siRNAs against the major innate immune pathways on dengue virus loads. We show that while Wolbachia infection induces genes in the Toll, JAK/STAT and RNAi pathways, only reduced expression of RNAi leads to a rebound of dengue virus loads in Wolbachia-infected cells. The magnitude of the effect explained less than 10% of the total DENV load, demonstrating that blocking must be dependent on other factors in addition to the expression of RNAi. The findings bode well for the long-term stability of blocking given that immunity gene expression would likely be highly plastic and susceptible to rapid evolution.


Assuntos
Vírus da Dengue/imunologia , Mosquitos Vetores/imunologia , Interferência de RNA/imunologia , Wolbachia/imunologia , Aedes/imunologia , Aedes/microbiologia , Aedes/virologia , Animais , Antibiose/genética , Antibiose/imunologia , Linhagem Celular , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/virologia , Replicação Viral/genética , Replicação Viral/imunologia , Wolbachia/genética , Wolbachia/fisiologia
18.
Antimicrob Agents Chemother ; 58(8): 4804-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24913159

RESUMO

Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4(+) T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4(+) T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-2/efeitos dos fármacos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Estavudina/farmacologia , Proteínas Virais Reguladoras e Acessórias/metabolismo , Zidovudina/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Expressão Gênica , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , HIV-2/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Células Jurkat , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas Monoméricas de Ligação ao GTP/genética , Cultura Primária de Células , Proteína 1 com Domínio SAM e Domínio HD , Timidina/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA