Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
NPJ Precis Oncol ; 8(1): 136, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898118

RESUMO

Less than 15-20% of patients who meet the criteria for hereditary breast and ovarian cancer (HBOC) carry pathogenic coding genetic mutations, implying that other molecular mechanisms may contribute to the increased risk of this condition. DNA methylation in peripheral blood has been suggested as a potential epigenetic marker for the risk of breast cancer (BC). We aimed to discover methylation marks in peripheral blood associated with BC in 231 pre-treatment BC patients meeting HBOC criteria, testing negative for coding pathogenic variants, and 156 healthy controls, through methylation analysis by targeted bisulfite sequencing on 18 tumor suppressor gene promoters (330 CpG sites). We found i) hypermethylation in EPCAM (17 CpG sites; p = 0.017) and RAD51C (27 CpG sites; p = 0.048); ii) hypermethylation in 36 CpG-specific sites (FDR q < 0.05) in the BC patients; iii) four specific CpG sites were associated with a higher risk of BC (FDR q < 0.01, Bonferroni p < 0.001): cg89786999-FANCI (OR = 1.65; 95% CI:1.2-2.2), cg23652916-PALB2 (OR = 2.83; 95% CI:1.7-4.7), cg47630224-MSH2 (OR = 4.17; 95% CI:2.1-8.5), and cg47596828-EPCAM (OR = 1.84; 95% CI:1.5-2.3). Validation of cg47630224-MSH2 methylation in one Australian cohort showed an association with 3-fold increased BC risk (AUC: 0.929; 95% CI: 0.904-0.955). Our findings suggest that four DNA methylation CpG sites may be associated with a higher risk of BC, potentially serving as biomarkers in patients without detectable coding mutations.

2.
Mol Cell Biol ; 43(12): 631-649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014992

RESUMO

PTP1B plays a key role in developing different types of cancer. However, the molecular mechanism underlying this effect is unclear. To identify molecular targets of PTP1B that mediate its role in tumorigenesis, we undertook a SILAC-based phosphoproteomic approach, which allowed us to identify Cdk3 as a novel PTP1B substrate. Substrate trapping experiments and docking studies revealed stable interactions between the PTP1B catalytic domain and Cdk3. In addition, we observed that PTP1B dephosphorylates Cdk3 at tyrosine residue 15 in vitro and interacts with it in human glioblastoma cells. Next, we found that pharmacological inhibition of PTP1B or its depletion with siRNA leads to cell cycle arrest with diminished activity of Cdk3, hypophosphorylation of Rb, and the downregulation of E2F target genes Cdk1, Cyclin A, and Cyclin E1. Finally, we observed that the expression of a constitutively active Cdk3 mutant bypasses the requirement of PTP1B for cell cycle progression and expression of E2F target genes. These data delineate a novel signaling pathway from PTP1B to Cdk3 required for efficient cell cycle progression in an Rb-E2F dependent manner in human GB cells.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Divisão Celular , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Ciclo Celular/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
3.
Front Genet ; 14: 1094260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845387

RESUMO

Background: Individuals of Ashkenazi Jewish ancestry have been identified as having higher prevalence of specific pathogenic variants associated with susceptibility to specific rare and chronic diseases. In Mexico, the prevalence and composition of rare cancer predisposing germline variants in Ashkenazi Jewish individuals has not been evaluated. Aim and methods: We aimed to evaluate the prevalence of pathogenic variants by massive parallel sequencing in a panel of 143 cancer-predisposing genes in 341 women from the Ashkenazi Jewish community of Mexico, who were contacted and invited to participate in the study through the ALMA Foundation for Cancer Reconstruction. Pre- and posttest genetic counseling was given and a questionnaire on personal, gyneco-obstetric, demographic and lifestyle variables was conducted. From peripheral blood DNA, the complete coding region, and splicing sites of a panel of 143 cancer susceptibility genes, including 21 clinically relevant genes, were sequenced. The Mexican founder mutation BRCA1 ex9-12del [NC_000017.10(NM_007294):c. (825+1-826-1)_(4,589+1-4,590-1)del] was also evaluated. Results: Among study participants (mean age ±standard deviation: 47 ± 14) 15% reported a personal history of cancer (50/341). Fourteen percent of participants (48/341) were carriers of pathogenic and likely pathogenic variants distributed among seven high-risk genes (APC, CHEK2, MSH2, BMPR1A, MEN1, MLH1, and MSH6), whereas 18.2% (62/341) had variants of uncertain clinical significance in genes associated with breast and ovarian cancer susceptibility (list of genes with VUS). Pathogenic and likely pathogenic variants in 16 susceptibility genes with ambiguous or non-well-established risk association for cancer were detected in 17.6% (60/341) of participants. Sixty four percent of participants reported current alcohol consumption compared with the 39 percent prevalence of alcohol consumption in Mexican women. None of the participants carried the recurrent Ashkenazi and Mexican founder mutations in BRCA1 or BRCA2, but 2% (7/341) had pathogenic Ashkenazi Jewish founder variants in BLM. Conclusion: Our findings show a diverse pathogenic variant composition among the recruited individuals of Ashkenazi Jewish ancestry in Mexico consistent with being a high-risk population for genetic diseases, which warrants further investigation to adequately assess the burden of hereditary breast cancer in this group and implement appropriate preventative programs.

4.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766852

RESUMO

Diabetic rat embryos have increased cortical neurogenesis and neuron maturation, and their offspring presented altered neuron polarity, lamination, and diminished neuron excitability. The FOXP2 overexpression results in higher cortical neurogenesis by increasing the transition of radial glia to the intermediate progenitor. Similarly, histamine through H1-receptor activation increases cortical neuron differentiation. Indeed, blocking the H1-receptor by the systemic administration of chlorpheniramine to diabetic pregnant rats prevents increased neurogenesis. Here, we explore the relationship between the H1-receptor and FOXP2 on embryo neurogenesis from diabetic dams. Through qRT-PCR, Western blot, immunohistofluorescence, and flow cytometry, we showed an increased FOXP2 expression and nuclear localization, a reduced Nestin expression and -positive cells number, and a higher PKCα expression in the cortical neuroepithelium of fourteen-day-old embryos from diabetic rats. Interestingly, this scenario was prevented by the chlorpheniramine systemic administration to diabetic pregnant rats at embryo day twelve. These data, together with the bioinformatic analysis, suggest that higher H1-receptor activity in embryos under high glucose increases FOXP2 nuclear translocation, presumably through PKCα phosphorylation, impairing the transition of radial glia to intermediate progenitor and increasing neuron differentiation in embryos of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Neurais , Animais , Feminino , Gravidez , Ratos , Clorfeniramina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histamina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteína Quinase C-alfa/metabolismo , Telencéfalo/metabolismo , Receptores Histamínicos H1
5.
Appl Microbiol Biotechnol ; 106(23): 7905-7916, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36342507

RESUMO

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been one of the most catastrophic diseases observed in recent years. It has reported nearly 550 million cases worldwide, with more than 6.35 million deaths. In Mexico, an increased incidence and mortality of this disease were observed, where the immune response has been involved in the magnitude and severity. A critical version of the disease is accompanied by hyperinflammatory responses, with cytokine and defective cellular responses. A detailed understanding of the role of molecules and cells in the immune response during COVID-19 disease may help to generate effective protection mechanisms, improving those we already have. Here we analyzed blood samples obtained from patients at the Hospital Regional de Alta Especialidad de Ixtapaluca (HRAEI), Mexico, which were classified according to living guidance for clinical management of COVID-19 by the World Health Organization: asymptomatic, mild, severe, and critical disease. We observed increased interleukin (IL)-6 levels and a T-CD8+ and T-CD4+ cell reduction correlated with the critical disease version. Importantly, here, we described a significant reduction of CD11b+CD45highCD14low monocytes during severe disease, which displayed a non-classical profile, expressing IL-10, transforming growth factor (TGF)-ß, and indoleamine 2,3-dioxygenase (IDO)1 molecule. Moreover, CD11b+CD45highCD14low monocytes obtained from infected one-dose vaccinated patients (Pfizer® vaccine) who suffered minimal symptoms showed simultaneously a dual classical and no-classical profile expressing pro- and anti-inflammatory cytokines. These results suggest that blood monocytes expressing a dual pro- and anti-inflammatory profile might be a predictive marker for protection in the Mexican population during COVID-19 disease. KEY POINTS : • Exacerbated immune response is associated with COVID-19 severe disease. • Dual monocyte activation profile is crucial for predicting protection during COVID-19. • Vaccination is crucial to induce the dual activation profile in monocytes.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Pandemias/prevenção & controle , Monócitos/metabolismo , México , Citocinas/metabolismo
6.
J Cancer ; 13(13): 3404-3414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313038

RESUMO

Colorectal cancer (CRC) is one of the top five cancers in incidence and mortality worldwide. The early detection of this neoplasm through analysis of circulating free DNA (cfDNA), which carries tumor genetic alterations, as a liquid biopsy, could have a major impact in enhancing early detection and reducing the mortality rate. The aim of this work was to demonstrate the feasibility of using cfDNA as a liquid biopsy for the early detection of CRC. For this purpose, we implemented an azoxymethane and dextran sodium sulfate-induced murine carcinogenesis model to detect oncogenic somatic mutations in Ctnnb1 and Kras during CRC development. To enhance the sensitivity in the detection, E-ice-COLD-PCR was utilized to selectively enrich for mutant alleles, followed by massively parallel sequencing. Driving somatic mutations were detected in Ctnnb1 and Kras in the liquid biopsies of early stages of tumor development, corresponding to the formation of aberrant crypt foci, the first histological alterations that can be identified throughout the formation of CRC. The concentration of cfDNA was increased along the carcinogenic process. Polyclonality in Ctnnb1 was found in tumor samples and cfDNA in this model. On the other hand, the use of cfDNA as a non-invasive test resulted in superior early detection compared to microPET/CT imaging. As a proof-of-principle, this study shows the great potential use of allelic-specific PCR for the detection and enrichment of pathogenic alleles present in cfDNA samples, as a test for early non-invasive detection of CRC. This work provides scientific evidence to set methodological bases that allow early detection of mutations in cfDNA obtained from plasma of CRC in humans.

7.
Cancers (Basel) ; 13(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680239

RESUMO

In triple-negative breast cancer (TNBC), only 30% of patients treated with neoadjuvant chemotherapy achieve a pathological complete response after treatment and more than 90% die due to metastasis formation. The diverse clinical responses and metastatic developments are attributed to extensive intrapatient genetic heterogeneity and tumor evolution acting on this neoplasm. In this work, we aimed to evaluate genomic alterations and tumor evolution in TNBC patients with aggressive disease. We sequenced the whole exome of 16 lesions from four patients who did not respond to therapy, and took several follow-up samples, including samples from tumors before and after treatment, as well as from the lymph nodes and skin metastases. We found substantial intrapatient genetic heterogeneity, with a variable tumor mutational composition. Early truncal events were MCL1 amplifications. Metastatic lesions had deletions in RB1 and PTEN, along with TERT, AKT2, and CCNE1 amplifications. Mutational signatures 06 and 12 were mainly detected in skin metastases and lymph nodes. According to phylogenetic analysis, the lymph node metastases occurred at an early stage of TNBC development. Finally, each patient had three to eight candidate driving mutations for targeted treatments. This study delves into the genomic complexity and the phylogenetic and evolutionary development of aggressive TNBC, supporting early metastatic development, and identifies specific genetic alterations associated with a response to targeted therapies.

8.
Genes (Basel) ; 11(11)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33227964

RESUMO

Triple-negative breast cancer (TNBC) presents a marked diversity at the molecular level, which promotes a clinical heterogeneity that further complicates treatment. We performed a detailed whole exome sequencing profile of 29 Mexican patients with long follow-up TNBC to identify genomic alterations associated with overall survival (OS), disease-free survival (DFS), and pathologic complete response (PCR), with the aim to define their role as molecular predictive factors of treatment response and prognosis. We detected 31 driver genes with pathogenic mutations in TP53 (53%), BRCA1/2 (27%), CDKN1B (9%), PIK3CA (9%), and PTEN (9%), and 16 operative mutational signatures. Moreover, tumors with mutations in BRCA1/2 showed a trend of sensitivity to platinum salts. We found an association between deficiency in DNA repair and surveillance genes and DFS. Across all analyzed tumors we consistently found a heterogeneous molecular complexity in terms of allelic composition and operative mutational processes, which hampered the definition of molecular traits with clinical utility. This work contributes to the elucidation of the global molecular alterations of TNBC by providing accurate genomic data that may help forthcoming studies to improve treatment and survival. This is the first study that integrates genomic alterations with a long follow-up of clinical variables in a Latin American population that is an underrepresented ethnicity in most of the genomic studies.


Assuntos
Mutação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade , Adulto , Idoso , Distúrbios no Reparo do DNA/genética , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/patologia , Pessoa de Meia-Idade , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Sequenciamento do Exoma
9.
Cancer Cell Int ; 19: 80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30983885

RESUMO

BACKGROUND: Invasion and metastasis are determinant events in the prognosis of Colorectal cancer (CRC), a common neoplasm worldwide. An important factor for metastasis is the acquired capacity of the cell to proliferate and invade adjacent tissues. In this paper, we explored the role of micro-RNA-26a in the regulation of proliferation and migration in CRC-derived cells through the negative regulation of PTEN, a key negative regulator of the AKT pathway. METHODS: Expression levels of PTEN and mir-26a were surveyed in normal and CRC-derived cell lines; paraffin embedded human tissues, TCGA CRC expression data and a Balb/c mice orthotopic induced CRC model. CRC was induced by an initial intraperitoneal dose of the colonic carcinogen Azoxymethane followed by inflammatory promoter Dextran Sulfate Sodium Salt. Luciferase assays provide information about miR-26a-PTEN 3'UTR interaction. Proliferation and migration by real time cell analysis and wound-healing functional analyses were performed to assess the participation of mir-26a on important hallmarks of CRC and its regulation on the PTEN gene. RESULTS: We observed a negative correlation between PTEN and mir-26a expression in cell lines, human tissues, TCGA data, and tissues derived from the CRC mouse model. Moreover, we showed that negative regulation of PTEN exerted by miR-26a affected AKT phosphorylation levels directly. Functional assays showed that mir-26a directly down-regulates PTEN, and that mir-26a over-expressing cells had higher proliferation and migration rates. CONCLUSIONS: All this data proposes an important role of mir-26a as an oncomir in the progression and invasion of CRC. Our data suggested that mir-26a could be used as a biomarker of tumor development in CRC patients, however more studies must be conducted to establish its clinical role.

10.
Front Oncol ; 9: 1429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921681

RESUMO

Purpose: Hereditary Breast and Ovarian Cancer (HBOC) syndrome is responsible for ~5-10% of all diagnosed breast and ovarian cancers. Breast cancer is the most common malignancy and the leading cause of cancer-related mortality among women in Latin America (LA). The main objective of this study was to develop a comprehensive understanding of the genomic epidemiology of HBOC throughout the establishment of The Latin American consortium for HBOC-LACAM, consisting of specialists from 5 countries in LA and the description of the genomic results from the first phase of the study. Methods: We have recruited 403 individuals that fulfilled the criteria for HBOC from 11 health institutions of Argentina, Colombia, Guatemala, Mexico and Peru. A pilot cohort of 222 individuals was analyzed by NGS gene panels. One hundred forty-three genes were selected on the basis of their putative role in susceptibility to different hereditary cancers. Libraries were sequenced in MiSeq (Illumina, Inc.) and PGM (Ion Torrent-Thermo Fisher Scientific) platforms. Results: The overall prevalence of pathogenic variants was 17% (38/222); the distribution spanned 14 genes and varied by country. The highest relative prevalence of pathogenic variants was found in patients from Argentina (25%, 14/57), followed by Mexico (18%, 12/68), Guatemala (16%, 3/19), and Colombia (13%, 10/78). Pathogenic variants were found in BRCA1 (20%) and BRCA2 (29%) genes. Pathogenic variants were found in other 12 genes, including high and moderate risk genes such as MSH2, MSH6, MUTYH, and PALB2. Additional pathogenic variants were found in HBOC unrelated genes such as DCLRE1C, WRN, PDE11A, and PDGFB. Conclusion: In this first phase of the project, we recruited 403 individuals and evaluated the germline genetic alterations in an initial cohort of 222 patients among 4 countries. Our data show for the first time in LA the distribution of pathogenic variants in a broad set of cancer susceptibility genes in HBOC. Even though we used extended gene panels, there was still a high proportion of patients without any detectable pathogenic variant, which emphasizes the larger, unexplored genetic nature of the disease in these populations.

11.
Cancers (Basel) ; 10(10)2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262796

RESUMO

Hereditary breast and ovarian cancer syndrome (HBOC) represents 5⁻10% of all patients with breast cancer and is associated with high-risk pathogenic alleles in BRCA1/2 genes, but only for 25% of cases. We aimed to find new pathogenic alleles in a panel of 143 cancer-predisposing genes in 300 Mexican cancer patients with suspicion of HBOC and 27 high-risk patients with a severe family history of cancer, using massive parallel sequencing. We found pathogenic variants in 23 genes, including BRCA1/2. In the group of cancer patients 15% (46/300) had a pathogenic variant; 11% (33/300) harbored variants with unknown clinical significance (VUS) and 74% (221/300) were negative. The high-risk group had 22% (6/27) of patients with pathogenic variants, 4% (1/27) had VUS and 74% (20/27) were negative. The most recurrent mutations were the Mexican founder deletion of exons 9-12 and the variant p.G228fs in BRCA1, each found in 5 of 17 patients with alterations in this gene. Rare VUS with potential impact at the protein level were found in 21 genes. Our results show for the first time in the Mexican population a higher contribution of pathogenic alleles in other susceptibility cancer genes (54%) than in BRCA1/2 (46%), highlighting the high locus heterogeneity of HBOC and the necessity of expanding genetic tests for this disease to include broader gene panels.

12.
Tumour Biol ; 39(4): 1010428317695945, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28443472

RESUMO

MicroRNAs are non-coding short RNAs that target the 3' untranslated region of messenger RNAs (mRNAs) and lead to their degradation or to translational repression. Several microRNAs have been designated as oncomirs, owing to their regulating tumor suppressor genes. Interestingly, a few of them have been found to target multiple genes whose simultaneous suppression contributes to the development of a tumoral phenotype. Here, we have showed that miR-26a is overexpressed in colorectal cancer data obtained from TCGA Research Network and in human colon cancer pathological specimens; moreover, an orthotopic in vivo model of colon cancer showed overexpression of miR-26a, while Rb1 expression inversely correlated to miR-26a in TCGA Research Network data, pathological samples, and the in vivo model. Then, by means of luciferase assay, we demonstrated that miR-26a targets the 3' untranslated region of Rb1 mRNA directly. This is, to our knowledge, the first report of miR-26a targeting Rb1 in colon cancer. The results of this study suggested that miR-26a could serve as a progression biomarker in colorectal cancer. Further validation studies are still needed to confirm our findings.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Proteínas de Ligação a Retinoblastoma/biossíntese , Ubiquitina-Proteína Ligases/biossíntese , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Biomarcadores Tumorais/biossíntese , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Camundongos , MicroRNAs/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas de Ligação a Retinoblastoma/genética , Ubiquitina-Proteína Ligases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mediators Inflamm ; 2016: 8543561, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635116

RESUMO

Amphipterygium adstringens is an endemic species in Mexico commonly known as "cuachalalate." Healers to treat gastritis, gastric ulcers, and gastrointestinal cancer have traditionally used the bark. We investigated the effects of alcoholic extract of A. adstringens (AaEE) in DSS-induced colitis in mice. The protective effect of AaEE was determined at 200 mg/kg by oral gavage for 10 days. We determine the effect of AaEE on clinical features (disease activity index), antioxidants, anti-inflammatory, and immunomodulatory activities in relation to the activity of SOD, CAT, and GPx, levels of proinflammatory cytokines, and changes both macroscopic and microscopic of the colonic mucosa. AaEE significantly reduced the inflammation of colon and significantly increased SOD and GPx activities. AaEE also significantly decreased TNF-α, IFN-γ, and IL-1ß cytokine levels compared to DSS-treated mice and reduced both infiltration of inflammatory cells and the mucosal damage in colon. The results suggested the protective potential of AaEE in DSS-induced colitis and this might be attributed to its phytochemicals compounds that have been found to induce a wide spectrum of activities such as reduction in oxidative stress, suppression of inflammation, modulating numerous signal transduction pathways, and induction of apoptosis. The findings of this study suggest that AaEE has substantial potential for the treatment of inflammatory colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Extratos Vegetais/farmacologia , Sapindaceae/química , Animais , Antioxidantes/metabolismo , Apoptose , Catalase/metabolismo , Colite Ulcerativa/induzido quimicamente , Colo/efeitos dos fármacos , Citocinas/metabolismo , Sulfato de Dextrana , Feminino , Glutationa Peroxidase/metabolismo , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Superóxido Dismutase/metabolismo
14.
Biomed Res Int ; 2013: 570158, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533995

RESUMO

Macrophages are critically involved in the interaction between T. crassiceps and the murine host immune system. Also, a strong gender-associated susceptibility to murine cysticercosis has been reported. Here, we examined the sex-associated expression of molecules MHC-II, CD80, CD86, PD-L1, and PD-L2 on peritoneal F4/80(hi) macrophages of BALB/c mice infected with Taenia crassiceps. Peritoneal macrophages from both sexes of mice were exposed to T. crassiceps total extract (TcEx). BALB/c Females mice recruit higher number of macrophages to the peritoneum. Macrophages from infected animals show increased expression of PDL2 and CD80 that was dependent from the sex of the host. These findings suggest that macrophage recruitment at early time points during T. crassiceps infection is a possible mechanism that underlies the differential sex-associated susceptibility displayed by the mouse gender.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Antígeno B7-H1/metabolismo , Cisticercose/metabolismo , Antígenos H-2/metabolismo , Macrófagos Peritoneais/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Animais , Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Cisticercose/imunologia , Cisticercose/parasitologia , Suscetibilidade a Doenças , Feminino , Regulação da Expressão Gênica , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Caracteres Sexuais , Taenia/imunologia , Taenia/metabolismo , Taenia/patogenicidade
15.
Arch. med. res ; 28(3): 337-42, sept. 1997. ilus, tab
Artigo em Inglês | LILACS | ID: lil-225237

RESUMO

The effects of prolonged stressful stimulaton on the in vitro proliferative response of thymic T cells and the thymic zinc concentration were investigated in newborn Balb/c mice. Animals were stressed y intraperitoneal injections with aliquots from a heat-killed staphyloccocal suspension over one month. The splenic T lymphocytes from the stressed animals showed a significant reduction in the in vitro response to cancanavalin A (Con-A) stimulation. However, an unexpected and significant increase in proliferative response was observed when thymic lymphocytes from stressed animals were stimulated with the same mitogen. The intrathymic zinc levels were regularly elevated in stressed mice, in contrast to those values obtained in the thymus from healthy control mice. These results suggest that neonatal stress can disrupt the intrathymic maturation and the selection of pre-T lymphocytes. The increment of the in vitro proliferative response of T cells from of thymus of stressed mice may be caused by proportionally higher amounts of intrathymic lymphoid suppopulations expressing a mature phenotype and functionality


Assuntos
Animais , Masculino , Feminino , Animais Recém-Nascidos , Concanavalina A/farmacologia , Camundongos Endogâmicos BALB C , Estimulação Química , Estresse Fisiológico/fisiopatologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/fisiologia , Ativação Linfocitária , Ativação Linfocitária/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA