Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 188: 114439, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823829

RESUMO

Tropane alkaloids (TAs) are secondary metabolites from weeds that can contaminate cereals and vegetables during harvest. Due to their toxicity, the Regulation (EC) 2023/915 sets maximum levels for atropine and scopolamine in cereal-based foods for infants containing millet, sorghum, buckwheat or their derived products. The aim of this study was to evaluate the effect of pH and temperature on the stability of TAs, as possible parameters in thermal processing to mitigate this chemical hazard in cereal-based infant food. The effect of pH (4 and 7) and temperature (80 °C and 100 °C) was assessed in buffer solutions. Also, treatment at 180 °C was performed in spiked and naturally incurred millet flour to assess the effect of high temperature, simulating cooking or drying, on the stability of TAs in the cereal matrix. The fate of 24 TAs was assessed by UHPLC-MS/MS. TAs showed high thermostability, although it was variable depending on the specific compound, pH, temperature and treatment time. In buffer solutions, higher degradation was found at 100 °C and pH 7. In spiked millet flour at 180 °C for 10 min, scopolamine and atropine contents decreased by 25 % and 22 %, similarly to other TAs which also showed a slow thermal degradation. Atropine, scopolamine, anisodamine, norscopolamine, scopine and scopoline were found in naturally contaminated millet flour. Interestingly, naturally incurred atropine was more thermostable than when spiked, showing a protective effect of the cereal matrix on TAs degradation. The present results highlight the need for an accurate monitorization of TAs in raw materials, as this chemical hazard may remain in infant cereal-based food even after intense thermal processing.


Assuntos
Grão Comestível , Contaminação de Alimentos , Alimentos Infantis , Espectrometria de Massas em Tandem , Grão Comestível/química , Concentração de Íons de Hidrogênio , Alimentos Infantis/análise , Contaminação de Alimentos/prevenção & controle , Tropanos/química , Tropanos/análise , Temperatura , Alcaloides/análise , Humanos , Manipulação de Alimentos/métodos , Temperatura Alta , Atropina/análise , Atropina/química , Lactente , Cromatografia Líquida de Alta Pressão
2.
Sci Rep ; 12(1): 20832, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460715

RESUMO

Prevention and control of diseases and delaying the signs of ageing are nowadays one of the major goals of biomedicine. Sirtuins, a family of NAD+ dependent deacylase enzymes, could be pivotal targets of novel preventive and therapeutic strategies to achieve such aims. SIRT1 activating and inhibiting compounds, such as polyphenols and bioactive peptides, have been proposed to be involved in the development of many human diseases. The objective of this work was to assess and compare the antioxidant and SIRT1 modulation activities of enzymatic protein hydrolysates (EPHs) from a wide number of algae species (24 commercial samples and 12 samples harvested off the Atlantic coast of northern Spain). High antioxidant activities were observed in EPHs from red and green seaweed species. Moreover, 19 samples exhibited SIRT1 activation, while EPHs from the 16 samples were SIRT1 inhibitors. Pearson's correlation test and Principal Component Analysis revealed significant correlations between (1) total peptide and hydrophobic amino acid content in EPHs and their antioxidant activities, and (2) concentrations of taurine, homotaurine, and amino acid gamma aminobutyric acid in EPHs and their SIRT1 modulation activity.


Assuntos
Antifibrinolíticos , Hidrolisados de Proteína , Humanos , Hidrolisados de Proteína/farmacologia , Aminoácidos , Sirtuína 1 , Antioxidantes/farmacologia , Taurina/farmacologia , Ácido gama-Aminobutírico
3.
Food Chem ; 368: 130770, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34399181

RESUMO

Amino acids and sulfonic acid derivatives (Taurine-Tau; Hypotaurine-HypTau; Homotaurine-HTau) of 26 different species of commercial macroalgae, microalgae and 10 algae-enriched food products from the market were quantified in a single chromatographic run. Tau and analogues were predominantly distributed in red species followed by green and brown species. Palmaria palmata, Gracilaria longissima and Porphyra sp. were the species with the highest content of Tau and total sulfonic acid derivatives (TAD). Notwithstanding, relatively high concentrations of HTau were found in green algae Ulva lactuca and G. vermicullophyla as well as in the brown algae Undaria pinnatifida. HTau and HypTau were found at lower concentrations than Tau in all species, except in Ulva lactuca. The samples with the highest protein content were the green species Chlorella vulgaris, Nannochloropsis, and Afanizomenon-flos aquae, followed by the red algae Gracilaria longissima and Gracilaria vermicullophyla. Samples of pasta formulated with algae ingredients contained the highest levels of sulfonic acid derivatives, evidencing that these products can provide levels of TAD comparable to those found in foods of animal origin. This study provides, for the first time, quantitative information regarding the distribution of sulfonic acid derivatives and total amino acids in multiple algae species as well as the nutritional impact of the inclusion of algae ingredients in commercial food matrices.


Assuntos
Chlorella vulgaris , Microalgas , Rodófitas , Alga Marinha , Aminoácidos , Animais , Alimentos Fortificados , Taurina/análogos & derivados
4.
J Chromatogr A ; 1589: 83-92, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30600163

RESUMO

A fast and reliable method for the simultaneous quantification of Taurine, Homotaurine, Hypotaurine and 19 amino acids in algae samples by Ultra-performance liquid chromatography coupled with diode array and tandem mass spectrometry (UHPLC-DAD-MS/MS) was optimized and validated. Target compounds were chromatographically resolved in less than 15 min. (ESI)-MS/MS electrospray ionization and pure analytical standards were used to confirm the identity of all analytes, while quantitation was carried out with diode array detection. Validation parameters of the method were satisfactory: Resolution of peak pairs was always higher than 1.55; all analytical curves showed R2 > 0.99, with working ranges between 0.04 mg/g to 33.1 mg/g and 9.13 mg/g to 107 mg/g and the Lack-of-fit test was not significant. The intra and inter-day precision of the method (expressed as relative standard deviation) were lower than 6% and recovery values ranged between 95% and 105%. The method was demonstrated to be robust to small deliberate variations of seven variables such sample weight, volume of hydrolysis reagent, hydrolysis time and temperature, derivatization time, column temperature and flow rate. The mean expanded uncertainty for all the target compounds were 0.7 mg/g with a coverage factor of 2. Method Limits of detection and quantification varied from 0.005 * 10-3 mg/g to 0.11 * 10-3 mg/g and 0.01* 10-3 mg/g to 0.22 * 10-3 mg/g respectively, allowing the routine determination of these bioactive compounds in algae extracts. Therefore, the method was successfully applied for the quantitative determination of the 22 target compounds in five seaweed commercial samples. Relevant compounds were quantified for the first time in the five algae species, namely: i) Taurine in Gracilaria longissima and Chlorella spp., ii) Gamma-aminobutyric acid in G. longissima and L. japonica, iii) Hydroxyproline in G. longissima, Ulva lactuca, Porphyra spp., and L. japonica and iv) Homotaurine and Hypotaurine in the five species studied.


Assuntos
Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Microalgas/química , Extratos Vegetais/química , Alga Marinha/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Taurina/análogos & derivados , Taurina/análise , Chlorella , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA