Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Nat Aging ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724732

RESUMO

DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.

2.
Nat Commun ; 15(1): 4211, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760334

RESUMO

The cumulative number of stem cell divisions in a tissue, known as mitotic age, is thought to be a major determinant of cancer-risk. Somatic mutational and DNA methylation (DNAm) clocks are promising tools to molecularly track mitotic age, yet their relationship is underexplored and their potential for cancer risk prediction in normal tissues remains to be demonstrated. Here we build and validate an improved pan-tissue DNAm counter of total mitotic age called stemTOC. We demonstrate that stemTOC's mitotic age proxy increases with the tumor cell-of-origin fraction in each of 15 cancer-types, in precancerous lesions, and in normal tissues exposed to major cancer risk factors. Extensive benchmarking against 6 other mitotic counters shows that stemTOC compares favorably, specially in the preinvasive and normal-tissue contexts. By cross-correlating stemTOC to two clock-like somatic mutational signatures, we confirm the mitotic-like nature of only one of these. Our data points towards DNAm as a promising molecular substrate for detecting mitotic-age increases in normal tissues and precancerous lesions, and hence for developing cancer-risk prediction strategies.


Assuntos
Metilação de DNA , Epigênese Genética , Mitose , Mutação , Neoplasias , Lesões Pré-Cancerosas , Humanos , Mitose/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias/genética , Neoplasias/patologia , Células-Tronco/metabolismo
3.
Nat Genet ; 56(5): 846-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641644

RESUMO

Methylation quantitative trait loci (mQTLs) are essential for understanding the role of DNA methylation changes in genetic predisposition, yet they have not been fully characterized in East Asians (EAs). Here we identified mQTLs in whole blood from 3,523 Chinese individuals and replicated them in additional 1,858 Chinese individuals from two cohorts. Over 9% of mQTLs displayed specificity to EAs, facilitating the fine-mapping of EA-specific genetic associations, as shown for variants associated with height. Trans-mQTL hotspots revealed biological pathways contributing to EA-specific genetic associations, including an ERG-mediated 233 trans-mCpG network, implicated in hematopoietic cell differentiation, which likely reflects binding efficiency modulation of the ERG protein complex. More than 90% of mQTLs were shared between different blood cell lineages, with a smaller fraction of lineage-specific mQTLs displaying preferential hypomethylation in the respective lineages. Our study provides new insights into the mQTL landscape across genetic ancestries and their downstream effects on cellular processes and diseases/traits.


Assuntos
Metilação de DNA , População do Leste Asiático , Locos de Características Quantitativas , Feminino , Humanos , Masculino , População do Leste Asiático/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
4.
Philos Trans R Soc Lond B Biol Sci ; 379(1900): 20230054, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38432318

RESUMO

Epigenetic changes are known to accrue in normal cells as a result of ageing and cumulative exposure to cancer risk factors. Increasing evidence points towards age-related epigenetic changes being acquired in a quasi-stochastic manner, and that they may play a causal role in cancer development. Here, I describe the quasi-stochastic nature of DNA methylation (DNAm) changes in ageing cells as well as in normal cells at risk of neoplastic transformation, discussing the implications of this stochasticity for developing cancer risk prediction strategies, and in particular, how it may require a conceptual paradigm shift in how we select cancer risk markers. I also describe the mounting evidence that a significant proportion of DNAm changes in ageing and cancer development are related to cell proliferation, reflecting tissue-turnover and the opportunity this offers for predicting cancer risk via the development of epigenetic mitotic-like clocks. Finally, I describe how age-associated DNAm changes may be causally implicated in cancer development via an irreversible suppression of tissue-specific transcription factors that increases epigenetic and transcriptomic entropy, promoting a more plastic yet aberrant cancer stem-cell state. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.


Assuntos
Epigênese Genética , Neoplasias , Entropia , Fatores de Risco , Proliferação de Células , Neoplasias/genética
5.
Nat Methods ; 21(3): 391-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374264

RESUMO

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.


Assuntos
Biologia Computacional , Genômica , Biologia Computacional/métodos , Benchmarking
6.
Genome Med ; 15(1): 59, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525279

RESUMO

BACKGROUND: Changes in cell-type composition of tissues are associated with a wide range of diseases and environmental risk factors and may be causally implicated in disease development and progression. However, these shifts in cell-type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell-type abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their power to detect shifts in tissue composition. METHODS: Here we derive a DNA methylation reference matrix for 12 immune-cell types in human blood and extensively validate it with flow-cytometric count data and in whole-genome bisulfite sequencing data of sorted cells. Using this reference matrix, we perform a directional Stouffer and fixed effects meta-analysis comprising 23,053 blood samples from 22 different cohorts, to comprehensively map associations between the 12 immune-cell fractions and common phenotypes. In a separate cohort of 4386 blood samples, we assess associations between immune-cell fractions and health outcomes. RESULTS: Our meta-analysis reveals many associations of cell-type fractions with age, sex, smoking and obesity, many of which we validate with single-cell RNA sequencing. We discover that naïve and regulatory T-cell subsets are higher in women compared to men, while the reverse is true for monocyte, natural killer, basophil, and eosinophil fractions. Decreased natural killer counts associated with smoking, obesity, and stress levels, while an increased count correlates with exercise and sleep. Analysis of health outcomes revealed that increased naïve CD4 + T-cell and N-cell fractions associated with a reduced risk of all-cause mortality independently of all major epidemiological risk factors and baseline co-morbidity. A machine learning predictor built only with immune-cell fractions achieved a C-index value for all-cause mortality of 0.69 (95%CI 0.67-0.72), which increased to 0.83 (0.80-0.86) upon inclusion of epidemiological risk factors and baseline co-morbidity. CONCLUSIONS: This work contributes an extensively validated high-resolution DNAm reference matrix for blood, which is made freely available, and uses it to generate a comprehensive map of associations between immune-cell fractions and common phenotypes, including health outcomes.


Assuntos
Metilação de DNA , Linfócitos T , Masculino , Humanos , Feminino , Linfócitos T/metabolismo , Fenótipo , Obesidade/metabolismo , Avaliação de Resultados em Cuidados de Saúde
7.
Nat Commun ; 14(1): 3244, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277399

RESUMO

Variations of cell-type proportions within tissues could be informative of biological aging and disease risk. Single-cell RNA-sequencing offers the opportunity to detect such differential abundance patterns, yet this task can be statistically challenging due to the noise in single-cell data, inter-sample variability and because such patterns are often of small effect size. Here we present a differential abundance testing paradigm called ELVAR that uses cell attribute aware clustering when inferring differentially enriched communities within the single-cell manifold. Using simulated and real single-cell and single-nucleus RNA-Seq datasets, we benchmark ELVAR against an analogous algorithm that uses Louvain for clustering, as well as local neighborhood-based methods, demonstrating that ELVAR improves the sensitivity to detect cell-type composition shifts in relation to aging, precancerous states and Covid-19 phenotypes. In effect, leveraging cell attribute information when inferring cell communities can denoise single-cell data, avoid the need for batch correction and help retrieve more robust cell states for subsequent differential abundance testing. ELVAR is available as an open-source R-package.


Assuntos
COVID-19 , Análise da Expressão Gênica de Célula Única , Humanos , Análise de Célula Única/métodos , RNA-Seq/métodos , Algoritmos , Análise por Conglomerados , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos
8.
Methods Mol Biol ; 2629: 23-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36929072

RESUMO

DNA methylation data generated from bulk tissue represents a mixture of many different cell types. Variation in the cell-type composition of tissues is thus a major confounder when inferring differential DNA methylation. Due to the high cost of single-cell methylome sequencing, computational methods that can dissect the cell-type heterogeneity of bulk DNA methylomes offer an efficient and cost-effective solution, especially in the context of large-scale EWAS. In this chapter, we present a step-by-step tutorial of Epigenetic cell-type deconvolution using Single-Cell Omic References (EpiSCORE), a reference-based method that leverages the high-resolution nature of single-cell RNA-Seq datasets to facilitate microdissection of bulk-tissue DNA methylomes.


Assuntos
Algoritmos , Metilação de DNA , Epigenoma , Epigenômica
9.
iScience ; 25(12): 105709, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36578319

RESUMO

Cell-fate transitions are fundamental to development and differentiation. Studying them with single-cell omic data is important to advance our understanding of the cell-fate commitment process, yet this remains challenging. Here we present a computational method called DICE, which analyzes the entropy of expression covariation patterns and which is applicable to static and dynamically changing cell populations. Using only single-cell RNA-Seq data, DICE is able to predict multipotent primed states and their regulatory factors, which we subsequently validate with single-cell epigenomic data. DICE reveals that primed states are often defined by epigenetic regulators or pioneer factors alongside lineage-specific transcription factors. In developmental time course single-cell RNA-Seq datasets, DICE can pinpoint the timing of bifurcations more precisely than lineage-trajectory inference algorithms or competing variance-based methods. In summary, by studying the dynamic changes of expression covariation entropy, DICE can help elucidate primed states and bifurcation dynamics without the need for single-cell epigenomic data.

10.
Front Mol Biosci ; 9: 1067406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533073

RESUMO

DNA methylation is one of the most important epigenetic mechanisms that governing regulation of gene expression, aberrant DNA methylation patterns are strongly associated with human malignancies. Long non-coding RNAs (lncRNAs) have being discovered as a significant regulator on gene expression at the epigenetic level. Emerging evidences have indicated the intricate regulatory effects between lncRNAs and DNA methylation. On one hand, transcription of lncRNAs are controlled by the promoter methylation, which is similar to protein coding genes, on the other hand, lncRNA could interact with enzymes involved in DNA methylation to affect the methylation pattern of downstream genes, thus regulating their expression. In addition, circular RNAs (circRNAs) being an important class of noncoding RNA are also found to participate in this complex regulatory network. In this review, we summarize recent research progress on this crosstalk between lncRNA, circRNA, and DNA methylation as well as their potential functions in complex diseases including cancer. This work reveals a hidden layer for gene transcriptional regulation and enhances our understanding for epigenetics regarding detailed mechanisms on lncRNA regulatory function in human cancers.

11.
Genomics Proteomics Bioinformatics ; 20(3): 446-454, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35643191

RESUMO

MicroRNAs (miRNAs) are important regulators in gene expression. The dysregulation of miRNA expression is widely reported in the transformation from physiological to pathological states of cells. A large number of differentially expressed miRNAs (DEMs) have been identified in various human cancers by using high-throughput technologies, such as microarray and miRNA-seq. Through mining of published studies with high-throughput experiment information, the database of DEMs in human cancers (dbDEMC) was constructed with the aim of providing a systematic resource for the storage and query of the DEMs. Here we report an update of the dbDEMC to version 3.0, which contains two-fold more data entries than the second version and now includes also data from mice and rats. The dbDEMC 3.0 contains 3268 unique DEMs in 40 different cancer types. The current datasets for differential expression analysis have expanded to 9 generalized categories. Moreover, the current release integrates functional annotations of DEMs obtained by using experimentally validated targets. The annotations can be of great benefit to the intensive analysis of the roles of DEMs in cancer. In summary, dbDEMC 3.0 provides a valuable resource for characterizing molecular functions and regulatory mechanisms of DEMs in human cancers. The dbDEMC 3.0 is freely accessible at https://www.biosino.org/dbDEMC.


Assuntos
Bases de Dados Genéticas , MicroRNAs , Neoplasias , Animais , Humanos , Camundongos , Ratos , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética
12.
Cancer Res ; 82(14): 2520-2537, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35536873

RESUMO

Evidence points toward the differentiation state of cells as a marker of cancer risk and progression. Measuring the differentiation state of single cells in a preneoplastic population could thus enable novel strategies for early detection and risk prediction. Recent maps of somatic mutagenesis in normal tissues from young healthy individuals have revealed cancer driver mutations, indicating that these do not correlate well with differentiation state and that other molecular events also contribute to cancer development. We hypothesized that the differentiation state of single cells can be measured by estimating the regulatory activity of the transcription factors (TF) that control differentiation within that cell lineage. To this end, we present a novel computational method called CancerStemID that estimates a stemness index of cells from single-cell RNA sequencing data. CancerStemID is validated in two human esophageal squamous cell carcinoma (ESCC) cohorts, demonstrating how it can identify undifferentiated preneoplastic cells whose transcriptomic state is overrepresented in invasive cancer. Spatial transcriptomics and whole-genome bisulfite sequencing demonstrated that differentiation activity of tissue-specific TFs was decreased in cancer cells compared with the basal cell-of-origin layer and established that differentiation state correlated with differential DNA methylation at the promoters of these TFs, independently of underlying NOTCH1 and TP53 mutations. The findings were replicated in a mouse model of ESCC development, and the broad applicability of CancerStemID to other cancer-types was demonstrated. In summary, these data support an epigenetic stem-cell model of oncogenesis and highlight a novel computational strategy to identify stem-like preneoplastic cells that undergo positive selection. SIGNIFICANCE: This study develops a computational strategy to dissect the heterogeneity of differentiation states within a preneoplastic cell population, allowing identification of stem-like cells that may drive cancer progression.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Biomarcadores Tumorais/genética , Metilação de DNA , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos
13.
Nat Methods ; 19(3): 296-306, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35277705

RESUMO

Bulk-tissue DNA methylomes represent an average over many different cell types, hampering our understanding of cell-type-specific contributions to disease development. As single-cell methylomics is not scalable to large cohorts of individuals, cost-effective computational solutions are needed, yet current methods are limited to tissues such as blood. Here we leverage the high-resolution nature of tissue-specific single-cell RNA-sequencing datasets to construct a DNA methylation atlas defined for 13 solid tissue types and 40 cell types. We comprehensively validate this atlas in independent bulk and single-nucleus DNA methylation datasets. We demonstrate that it correctly predicts the cell of origin of diverse cancer types and discovers new prognostic associations in olfactory neuroblastoma and stage 2 melanoma. In brain, the atlas predicts a neuronal origin for schizophrenia, with neuron-specific differential DNA methylation enriched for corresponding genome-wide association study risk loci. In summary, the DNA methylation atlas enables the decomposition of 13 different human tissue types at a high cellular resolution, paving the way for an improved interpretation of epigenetic data.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Epigênese Genética , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Neurônios/metabolismo
14.
Clin Epigenetics ; 14(1): 31, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35227298

RESUMO

Most studies aiming to identify epigenetic biomarkers do so from complex tissues that are composed of many different cell-types. By definition, these cell-types vary substantially in terms of their epigenetic profiles. This cell-type specific variation among healthy cells is completely independent of the variation associated with disease, yet it dominates the epigenetic variability landscape. While cell-type composition of tissues can change in disease and this may provide accurate and reproducible biomarkers, not adjusting for the underlying cell-type heterogeneity may seriously limit the sensitivity and precision to detect disease-relevant biomarkers or hamper our understanding of such biomarkers. Given that computational and experimental tools for tackling cell-type heterogeneity are available, we here stress that future epigenetic biomarker studies should aim to provide estimates of underlying cell-type fractions for all samples in the study, and to identify biomarkers before and after adjustment for cell-type heterogeneity, in order to obtain a more complete and unbiased picture of the biomarker-landscape. This is critical, not only to improve reproducibility and for the eventual clinical application of such biomarkers, but importantly, to also improve our molecular understanding of disease itself.


Assuntos
Epigênese Genética , Epigenoma , Biomarcadores , Metilação de DNA , Reprodutibilidade dos Testes
15.
Clin Epigenetics ; 14(1): 23, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164838

RESUMO

BACKGROUND: Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified biomarkers, their interpretation and validity is often confounded by cell-type heterogeneity. RESULTS: Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encompassing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin module centered around CTNND2, is inactivated in Barrett's Esophagus, a precursor lesion to EAC. By measuring DNA methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose methylation patterns in saliva correlate with EAC status. CONCLUSIONS: Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibility of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/genética , Biomarcadores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Progressão da Doença , Detecção Precoce de Câncer , Epigênese Genética , Epigenômica , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Humanos
16.
Epigenetics ; 17(3): 327-334, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34254878

RESUMO

Saliva and buccal samples are popular for epigenome wide association studies (EWAS) due to their ease of collection compared and their ability to sample a different cell lineage compared to blood. As these samples contain a mix of white blood cells and buccal epithelial cells that can vary within a population, this cellular heterogeneity may confound EWAS. This has been addressed by including cellular heterogeneity obtained through cytology at the time of collection or by using cellular deconvolution algorithms built on epigenetic data from specific cell types. However, to our knowledge, the two methods have not yet been compared. Here we show that the two methods are highly correlated in saliva and buccal samples (R = 0.84, P < 0.0001) by comparing data generated from cytological staining and Infinium MethylationEPIC arrays and the EpiDISH deconvolution algorithm from buccal and saliva samples collected from twenty adults. In addition, by using an expanded dataset from both sample types, we confirmed our previous finding that age has strong, non-linear negative correlation with epithelial cell proportion in both sample types. However, children and adults showed a large within-population variation in cellular heterogeneity. Our results validate the use of the EpiDISH algorithm in estimating the effect of cellular heterogeneity in EWAS and showed DNA methylation generally underestimates the epithelial cell content obtained from cytology.


Assuntos
Metilação de DNA , Epigenômica , Adulto , Criança , Ilhas de CpG , Epigênese Genética , Epigenômica/métodos , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/metabolismo
17.
Nat Aging ; 2(6): 548-561, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118452

RESUMO

Transcription factors (TFs) control cell identity and function. How their activity is altered during healthy aging is critical for an improved understanding of aging and disease risk, yet relatively little is known about such changes at cell-type resolution. Here we present and validate a TF activity estimation method for single cells from the hematopoietic system that is based on TF regulons, and apply it to a mouse single-cell RNA-sequencing atlas, to infer age-associated differentiation activity changes in the immune cells of different organs. This revealed an age-associated signature of macrophage dedifferentiation, which is shared across tissue types, and aggravated in tumor-associated macrophages. By extending the analysis to all major cell types, we reveal cell-type and tissue-type-independent age-associated alterations to regulatory factors controlling antigen processing, inflammation, collagen processing and circadian rhythm, that are implicated in age-related diseases. Finally, our study highlights the limitations of using TF expression to infer age-associated changes, underscoring the need to use regulatory activity inference methods.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Diferenciação Celular
18.
EBioMedicine ; 68: 103399, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34044218

RESUMO

BACKGROUND: Disruption of DNA methylation (DNAm) is one of the key signatures of cancer, however, detailed mechanisms that alter the DNA methylome in cancer remain to be elucidated. METHODS: Here we present a novel integrative analysis framework, called MeLncTRN (Methylation mediated LncRNA Transcriptional Regulatory Network), that integrates genome-wide transcriptome, DNA methylome and copy number variation profiles, to systematically identify the epigenetically-driven lncRNA-gene regulation circuits across 18 cancer types. FINDING: We show that a significant fraction of the aberrant DNAm and gene expression landscape in cancer is associated with long noncoding RNAs (lncRNAs). We reveal distinct types of regulation between lncRNA modulators and target genes that are operative in either only specific cancers or across cancers. Functional studies identified a common theme of cancer hallmarks that lncRNA modulators may participate in. The coupled lncRNA gene interactions via DNAm also serve as markers for classifications of cancer subtypes with different prognoses. INTERPRETATION: Our study reveals a vital layer of DNAm and associated expression regulation for many cancer-related genes and we also provide a valuable database resource for interrogating epigenetically mediated lncRNA-gene interactions in cancer. FUNDING: National Natural Science Foundation of China [91959106, 31871255].


Assuntos
Biologia Computacional/métodos , Metilação de DNA , Neoplasias/genética , RNA Longo não Codificante/genética , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Prognóstico , Análise de Sequência de RNA
19.
Nat Rev Genet ; 22(7): 459-476, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33875884

RESUMO

Single-cell omics is transforming our understanding of cell biology and disease, yet the systems-level analysis and interpretation of single-cell data faces many challenges. In this Perspective, we describe the impact that fundamental concepts from statistical mechanics, notably entropy, stochastic processes and critical phenomena, are having on single-cell data analysis. We further advocate the need for more bottom-up modelling of single-cell data and to embrace a statistical mechanics analysis paradigm to help attain a deeper understanding of single-cell systems biology.


Assuntos
Biologia Celular , Interpretação Estatística de Dados , Análise de Célula Única , Animais , Biologia Computacional , Entropia , Humanos , Modelos Estatísticos , RNA-Seq , Processos Estocásticos
20.
Bioinformatics ; 37(11): 1528-1534, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33244588

RESUMO

MOTIVATION: An important task in the analysis of single-cell RNA-Seq data is the estimation of differentiation potency, as this can help identify stem-or-multipotent cells in non-temporal studies or in tissues where differentiation hierarchies are not well established. A key challenge in the estimation of single-cell potency is the need for a fast and accurate algorithm, scalable to large scRNA-Seq studies profiling millions of cells. RESULTS: Here, we present a single-cell potency measure, called Correlation of Connectome and Transcriptome (CCAT), which can return accurate single-cell potency estimates of a million cells in minutes, a 100-fold improvement over current state-of-the-art methods. We benchmark CCAT against 8 other single-cell potency models and across 28 scRNA-Seq studies, encompassing over 2 million cells, demonstrating comparable accuracy than the current state-of-the-art, at a significantly reduced computational cost, and with increased robustness to dropouts. AVAILABILITY AND IMPLEMENTATION: CCAT is part of the SCENT R-package, freely available from https://github.com/aet21/SCENT. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Citoplasmático Pequeno , Análise de Célula Única , Diferenciação Celular , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA