Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(2): e0216923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38236051

RESUMO

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is necessary and sufficient for exclusion by the SieA system and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants that overcome the SieA block were isolated, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single-amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in phage target specificity. Our data strongly suggest a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.IMPORTANCEThe ongoing evolutionary battle between bacteria and the viruses that infect them is a critical feature of bacterial ecology on Earth. Viruses can kill bacteria by infecting them. However, when their chromosomes are integrated into a bacterial genome as a prophage, viruses can also protect the host bacterium by expressing genes whose products defend against infection by other viruses. This defense property is called "superinfection exclusion." A significant fraction of bacteria harbor prophages that encode such protective systems, and there are many different molecular strategies by which superinfection exclusion is mediated. This report is the first to describe the mechanism by which bacteriophage P22 SieA superinfection exclusion protein protects its host bacterium from infection by other P22-like phages. The P22 prophage-encoded inner membrane SieA protein prevents infection by blocking transport of superinfecting phage DNA across the inner membrane during injection.


Assuntos
Bacteriófago P22 , Bacteriófagos , Superinfecção , Humanos , Bacteriófago P22/genética , Bacteriófagos/genética , Prófagos/genética , Prófagos/metabolismo , Proteínas de Membrana/metabolismo , DNA/metabolismo , Aminoácidos/metabolismo
2.
J Mol Biol ; 435(24): 168365, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952769

RESUMO

Bacteriophage P22 is a prototypical member of the Podoviridae superfamily. Since its discovery in 1952, P22 has become a paradigm for phage transduction and a model for icosahedral viral capsid assembly. Here, we describe the complete architecture of the P22 tail apparatus (gp1, gp4, gp10, gp9, and gp26) and the potential location and organization of P22 ejection proteins (gp7, gp20, and gp16), determined using cryo-EM localized reconstruction, genetic knockouts, and biochemical analysis. We found that the tail apparatus exists in two equivalent conformations, rotated by ∼6° relative to the capsid. Portal protomers make unique contacts with coat subunits in both conformations, explaining the 12:5 symmetry mismatch. The tail assembles around the hexameric tail hub (gp10), which folds into an interrupted ß-propeller characterized by an apical insertion domain. The tail hub connects proximally to the dodecameric portal protein and head-to-tail adapter (gp4), distally to the trimeric tail needle (gp26), and laterally to six trimeric tailspikes (gp9) that attach asymmetrically to gp10 insertion domain. Cryo-EM analysis of P22 mutants lacking the ejection proteins gp7 or gp20 and biochemical analysis of purified recombinant proteins suggest that gp7 and gp20 form a molecular complex associated with the tail apparatus via the portal protein barrel. We identified a putative signal transduction pathway from the tailspike to the tail needle, mediated by three flexible loops in the tail hub, that explains how lipopolysaccharide (LPS) is sufficient to trigger the ejection of the P22 DNA in vitro.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Bacteriófago P22/química , Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Salmonella typhimurium/virologia , Proteínas da Cauda Viral/genética
3.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645741

RESUMO

Many temperate phages encode prophage-expressed functions that interfere with superinfection of the host bacterium by external phages. Salmonella phage P22 has four such systems that are expressed from the prophage in a lysogen that are encoded by the c2 (repressor), gtrABC, sieA, and sieB genes. Here we report that the P22-encoded SieA protein is the only phage protein required for exclusion by the SieA system, and that it is an inner membrane protein that blocks DNA injection by P22 and its relatives, but has no effect on infection by other tailed phage types. The P22 virion injects its DNA through the host cell membranes and periplasm via a conduit assembled from three "ejection proteins" after their release from the virion. Phage P22 mutants were isolated that overcome the SieA block, and they have amino acid changes in the C-terminal regions of the gene 16 and 20 encoded ejection proteins. Three different single amino acid changes in these proteins are required to obtain nearly full resistance to SieA. Hybrid P22 phages that have phage HK620 ejection protein genes are also partially resistant to SieA. There are three sequence types of extant phage-encoded SieA proteins that are less than 30% identical to one another, yet comparison of two of these types found no differences in target specificity. Our data are consistent with a model in which the inner membrane protein SieA interferes with the assembly or function of the periplasmic gp20 and membrane-bound gp16 DNA delivery conduit.

4.
J Biomol NMR ; 77(3): 93-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37093339

RESUMO

NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C'(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C'(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C'(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C'(ND) and 3∆C'(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.


Assuntos
Amidas , Proteínas , Amidas/química , Deutério/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Hidrogênio/química , Conformação Proteica , Ligação de Hidrogênio
5.
Sci Adv ; 8(49): eadc9641, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36475795

RESUMO

Sf6 is a bacterial virus that infects the human pathogen Shigella flexneri. Here, we describe the cryo-electron microscopy structure of the Sf6 tail machine before DNA ejection, which we determined at a 2.7-angstrom resolution. We built de novo structures of all tail components and resolved four symmetry-mismatched interfaces. Unexpectedly, we found that the tail exists in two conformations, rotated by ~6° with respect to the capsid. The two tail conformers are identical in structure but differ solely in how the portal and head-to-tail adaptor carboxyl termini bond with the capsid at the fivefold vertex, similar to a diamond held over a five-pronged ring in two nonidentical states. Thus, in the mature Sf6 tail, the portal structure does not morph locally to accommodate the symmetry mismatch but exists in two energetic minima rotated by a discrete angle. We propose that the design principles of the Sf6 tail are conserved across P22-like Podoviridae.

6.
Viruses ; 14(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35891382

RESUMO

The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.


Assuntos
Bacteriófago P22 , Herpesvirus Humano 1 , Bacteriófago P22/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Herpesvirus Humano 1/metabolismo , Triptofano/análise , Triptofano/metabolismo , Montagem de Vírus
7.
Protein Sci ; 31(5): e4321, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481638

RESUMO

Hydrodynamic radii (Rh -values) calculated from diffusion coefficients measured by pulse-field-gradient nuclear magnetic resonance are compared for folded and unfolded proteins. For native globular proteins, the Rh -values increase as a power of 0.35 with molecular size, close to the scaling factor of 0.33 predicted from polymer theory. Unfolded proteins were studied under four sets of conditions: in the absence of denaturants, in the presence of 6 M urea, in 95% dimethyl sulfoxide (DMSO), and in 40% hexafluoroisopropanol (HFIP). Scaling factors under all four unfolding conditions are similar (0.49-0.53) approaching the theoretical value of 0.60 for a fully unfolded random coil. Persistence lengths are also similar, except smaller in 95% DMSO, suggesting that the polypeptides are more disordered on a local scale with this solvent. Three of the proteins in our unfolded set have an asymmetric sequence-distribution of charged residues. While these proteins behave normally in water and 6 M urea, they give atypically low Rh -values in 40% HFIP and 95% DMSO suggesting they are forming electrostatic hairpins, favored by their asymmetric sequence charge distribution and the low dielectric constants of DMSO and HFIP. While diffusion-ordered NMR spectroscopy can separate small molecules, we show a number of factors combine to make protein-sized molecules much more difficult to resolve in mixtures. Finally, we look at the temperature dependence of apparent diffusion coefficients. Small molecules show a linear temperature response, while large proteins show abnormally large apparent diffusion coefficients at high temperatures due to convection, suggesting diffusion reference standards are only useful near 25°C.


Assuntos
Dimetil Sulfóxido , Biossíntese de Proteínas , Difusão , Espectroscopia de Ressonância Magnética , Proteínas , Ureia
8.
Viruses ; 13(8)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34452369

RESUMO

Tailed double-stranded DNA bacteriophages inject some proteins with their dsDNA during infection. Phage P22 injects about 12, 12, and 30 molecules of the proteins encoded by genes 7, 16 and 20, respectively. After their ejection from the virion, they assemble into a trans-periplasmic conduit through which the DNA passes to enter the cytoplasm. The location of these proteins in the virion before injection is not well understood, although we recently showed they reside near the portal protein barrel in DNA-filled heads. In this report we show that when these proteins are missing from the virion, a longer than normal DNA molecule is encapsidated by the P22 headful DNA packaging machinery. Thus, the ejection proteins occupy positions within the virion that can be occupied by packaged DNA when they are absent.


Assuntos
Bacteriófago P22/genética , DNA Viral/genética , Proteínas Virais/genética , Vírion/genética , Bacteriófago P22/química , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Empacotamento do DNA , DNA Viral/metabolismo , Técnicas Genéticas , Proteínas Virais/metabolismo
9.
Viruses ; 12(10)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066635

RESUMO

Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: ß-tulip, ß-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.


Assuntos
Vírus de DNA/genética , Proteínas Virais/química , Proteínas Virais/genética , Animais , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Empacotamento do DNA , DNA Viral , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Camundongos , Modelos Moleculares , Dobramento de Proteína , Relação Estrutura-Atividade , Vírion , Montagem de Vírus
10.
Biophys J ; 117(8): 1387-1392, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585705

RESUMO

Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Dobramento de Proteína , Proteínas Estruturais Virais/química , Bacteriófago P22/metabolismo , Capsídeo/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica , Domínios Proteicos , Proteínas Estruturais Virais/metabolismo
11.
Annu Rev Virol ; 6(1): 141-160, 2019 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-31337287

RESUMO

Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.


Assuntos
Bacteriófagos/genética , Proteínas do Capsídeo/genética , Capsídeo/fisiologia , DNA , Herpesviridae/genética , Montagem de Vírus , DNA Viral/genética , Herpesviridae/química , Modelos Moleculares , Conformação Proteica
12.
Virology ; 534: 45-53, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176063

RESUMO

Tailed dsDNA bacteriophages and herpesviruses form capsids using coat proteins that have the HK97 fold. In these viruses, the coat proteins first assemble into procapsids, which subsequently mature during DNA packaging. Generally interactions between the coat protein E-loop of one subunit and the P-domain of an adjacent subunit help stabilize both capsomers and capsids. Based on a recent 3.3 Šcryo-EM structure of the bacteriophage P22 virion, E-loop amino acids E52, E59 and E72 were suggested to stabilize the capsid through intra-capsomer salt bridges with the P-domain residues R102, R109 and K118. The glutamic acid residues were each mutated to alanine to test this hypothesis. The substitutions resulted in a WT phenotype and did not destabilize capsids; rather, the alanine substituted coat proteins increased the stability of procapsids and virions. These results indicate that different types of interactions must be used between the E-loop and P-domain to stabilize phage P22 procapsids and virions.


Assuntos
Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Capsídeo/química , Bacteriófago P22/química , Bacteriófago P22/genética , Bacteriófago P22/ultraestrutura , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Modelos Moleculares , Domínios Proteicos , Estabilidade Proteica , Vírion/química , Vírion/genética , Vírion/metabolismo
13.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31068429

RESUMO

Double-stranded DNA (dsDNA) tailed phages and herpesviruses assemble their capsids using coat proteins that have the ubiquitous HK97 fold. Though this fold is common, we do not have a thorough understanding of the different ways viruses adapt it to maintain stability in various environments. The HK97-fold E-loop, which connects adjacent subunits at the outer periphery of capsomers, has been implicated in capsid stability. Here, we show that in bacteriophage P22, residue W61 at the tip of the E-loop plays a role in stabilizing procapsids and in maturation. We hypothesize that a hydrophobic pocket is formed by residues I366 and W410 in the P domain of a neighboring subunit within a capsomer, into which W61 fits like a peg. In addition, W61 likely bridges to residues A91 and L401 in P-domain loops of an adjacent capsomer, thereby linking the entire capsid together with a network of hydrophobic interactions. There is conservation of this hydrophobic network in the distantly related P22-like phages, indicating that this structural feature is likely important for stabilizing this family of phages. Thus, our data shed light on one of the varied elegant mechanisms used in nature to consistently build stable viral genome containers through subtle adaptation of the HK97 fold.IMPORTANCE Similarities in assembly reactions and coat protein structures of the dsDNA tailed phages and herpesviruses make phages ideal models to understand capsid assembly and identify potential targets for antiviral drug discovery. The coat protein E-loops of these viruses are involved in both intra- and intercapsomer interactions. In phage P22, hydrophobic interactions peg the coat protein subunits together within a capsomer, where the E-loop hydrophobic residue W61 of one subunit packs into a pocket of hydrophobic residues I366 and W410 of the adjacent subunit. W61 also makes hydrophobic interactions with A91 and L401 of a subunit in an adjacent capsomer. We show these intra- and intercapsomer hydrophobic interactions form a network crucial to capsid stability and proper assembly.


Assuntos
Bacteriófago P22/química , Dobramento de Proteína , Proteínas Virais/química , Bacteriófago P22/genética , Interações Hidrofóbicas e Hidrofílicas , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Virais/genética
14.
Elife ; 82019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30945633

RESUMO

The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Caudovirales/fisiologia , Montagem de Vírus , Capsídeo/ultraestrutura , Caudovirales/ultraestrutura , Microscopia Crioeletrônica , DNA Viral/metabolismo , Imageamento Tridimensional , Espectroscopia de Ressonância Magnética , Ligação Proteica , Multimerização Proteica
15.
Curr Opin Virol ; 36: 9-16, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30856581

RESUMO

dsDNA Bacteriophages, some dsDNA archaeal viruses and the Herpesviruses share many features including a common capsid assembly pathway and coat protein fold. The coat proteins of these viruses, which have the HK97 fold, co-assemble with a free or attached scaffolding protein and other capsid proteins into a precursor capsid, known as a procapsid or prohead. The procapsid is a metastable state that increases in stability as a result of morphological changes that occur during the dsDNA packaging reaction. We review evidence from several systems indicating that proper contacts acquired in the assembly of the procapsid are critical to forming the correct morphology in the mature capsid.


Assuntos
Vírus de Archaea/química , Bacteriófagos/química , Proteínas do Capsídeo/química , Capsídeo/química , Herpesviridae/química , Modelos Moleculares , Dobramento de Proteína
16.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787152

RESUMO

Tailed double-stranded DNA (dsDNA) bacteriophages, herpesviruses, and adenoviruses package their genetic material into a precursor capsid through a dodecameric ring complex called the portal protein, which is located at a unique 5-fold vertex. In several phages and viruses, including T4, Φ29, and herpes simplex virus 1 (HSV-1), the portal forms a nucleation complex with scaffolding proteins (SPs) to initiate procapsid (PC) assembly, thereby ensuring incorporation of only one portal ring per capsid. However, for bacteriophage P22, the role of its portal protein in initiation of procapsid assembly is unclear. We have developed an in vitro P22 assembly assay where portal protein is coassembled into procapsid-like particles (PLPs). Scaffolding protein also catalyzes oligomerization of monomeric portal protein into dodecameric rings, possibly forming a scaffolding protein-portal protein nucleation complex that results in one portal ring per P22 procapsid. Here, we present evidence substantiating that the P22 portal protein, similarly to those of other dsDNA viruses, can act as an assembly nucleator. The presence of the P22 portal protein is shown to increase the rate of particle assembly and contribute to proper morphology of the assembled particles. Our results highlight a key function of portal protein as an assembly initiator, a feature that is likely conserved among these classes of dsDNA viruses.IMPORTANCE The existence of a single portal ring is essential to the formation of infectious virions in the tailed double-stranded DNA (dsDNA) phages, herpesviruses, and adenoviruses and, as such, is a viable antiviral therapeutic target. How only one portal is selectively incorporated at a unique vertex is unclear. In many dsDNA viruses and phages, the portal protein acts as an assembly nucleator. However, early work on phage P22 assembly in vivo indicated that the portal protein did not function as a nucleator for procapsid (PC) assembly, leading to the suggestion that P22 uses a unique mechanism for portal incorporation. Here, we show that portal protein nucleates assembly of P22 procapsid-like particles (PLPs). Addition of portal rings to an assembly reaction increases the rate of formation and yield of particles and corrects improper particle morphology. Our data suggest that procapsid assembly may universally initiate with a nucleation complex composed minimally of portal and scaffolding proteins (SPs).


Assuntos
Bacteriófago P22/química , Capsídeo/química , Montagem de Vírus , Bacteriófago P22/metabolismo , Capsídeo/metabolismo
17.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787158

RESUMO

Despite very low sequence homology, the major capsid proteins of double-stranded DNA (dsDNA) bacteriophages, some archaeal viruses, and the herpesviruses share a structural motif, the HK97 fold. Bacteriophage P22, a paradigm for this class of viruses, belongs to a phage gene cluster that contains three homology groups: P22-like, CUS-3-like, and Sf6-like. The coat protein of each phage has an inserted domain (I-domain) that is more conserved than the rest of the coat protein. In P22, loops in the I-domain are critical for stabilizing intra- and intersubunit contacts that guide proper capsid assembly. The nuclear magnetic resonance (NMR) structures of the P22, CUS-3, and Sf6 I-domains reveal that they are all six-stranded, anti-parallel ß-barrels. Nevertheless, significant structural differences occur in loops connecting the ß-strands, in surface electrostatics used to dock the I-domains with their respective coat protein core partners, and in sequence motifs displayed on the capsid surfaces. Our data highlight the structural diversity of I-domains that could lead to variations in capsid assembly mechanisms and capsid surfaces adapted for specific phage functions.IMPORTANCE Comparative studies of protein structures often provide insights into their evolution. The HK97 fold is a structural motif used to form the coat protein shells that encapsidate the genomes of many dsDNA phages and viruses. The structure and function of coat proteins based on the HK97 fold are often embellished by the incorporation of I-domains. In the present work we compare I-domains from three phages representative of highly divergent P22-like homology groups. While the three I-domains share a six-stranded ß-barrel skeleton, there are differences (i) in structure elements at the periphery of the conserved fold, (ii) in the locations of disordered loops important in capsid assembly and conformational transitions, (iii) in surfaces charges, and (iv) in sequence motifs that are potential ligand-binding sites. These structural modifications on the rudimentary I-domain fold suggest that considerable structural adaptability was needed to fulfill the versatile range of functional requirements for distinct phages.


Assuntos
Bacteriófago P22/química , Capsídeo/química , Dobramento de Proteína , Proteínas do Envelope Viral/química , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína
18.
Biomol NMR Assign ; 12(2): 339-343, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109462

RESUMO

Phage L encodes a trimeric 43 kDa decoration protein (Dec) that noncovalently binds and stabilizes the capsids of the homologous phages L and P22 in vitro. At physiological pH Dec was unsuitable for NMR. We were able to obtain samples amenable for NMR spectroscopy by unfolding Dec to pH 2 and refolding it to pH 4. Our unfolding/refolding protocol converted trimeric Dec to a folded 14.4 kDa monomer. We verified that the acid-unfolding protocol did not perturb the secondary structure, or the capsid-binding function of refolded Dec. We were able to obtain complete 1H, 15N, and 13C assignments for the Dec monomer, as well as information on its secondary structure and dynamics based on chemical shift assignments. The assigned NMR spectrum is being used to determine the three-dimensional structure of Dec, which is important for understanding how the trimer binds phage capsids and for the use of the protein as a platform for phage-display nanotechnology.


Assuntos
Bacteriófago lambda , Ressonância Magnética Nuclear Biomolecular , Proteínas Virais/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA