Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Appetite ; 200: 107504, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768926

RESUMO

The dynorphin peptides are the endogenous ligands for the kappa opioid receptor (KOR) and regulate food intake. Administration of dynorphin-A1-13 (DYN) in the paraventricular hypothalamic nucleus (PVN) increases palatable food intake, and this effect is blocked by co-administration of the orexin-A neuropeptide, which is co-released with DYN in PVN from neurons located in the lateral hypothalamus. While PVN administration of DYN increases palatable food intake, whether it increases food-seeking behaviors has yet to be examined. We tested the effects of DYN and norBNI (a KOR antagonist) on the seeking and consumption of sucrose using a progressive ratio (PR) and demand curve (DC) tasks. In PVN, DYN did not alter the sucrose breaking point (BP) in the PR task nor the elasticity or intensity of demand for sucrose in the DC task. Still, DYN reduced the delay in obtaining sucrose and increased licks during sucrose intake in the PR task, irrespective of the co-administration of orexin-A. In PVN, norBNI increased the delay in obtaining sucrose and reduced licks during sucrose intake in the PR task while increasing elasticity without altering intensity of demand in the DC task. However, subcutaneous norBNI reduced the BP for sucrose and increased the delay in obtaining sucrose in the PR task while reducing the elasticity of demand. Together, these data show different effects of systemic and PVN blockade of KOR on food-seeking, consummatory behaviors, and incentive motivation for sucrose and suggest that KOR activity in PVN is necessary but not sufficient to drive seeking behaviors for palatable food.


Assuntos
Dinorfinas , Motivação , Núcleo Hipotalâmico Paraventricular , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Animais , Masculino , Motivação/efeitos dos fármacos , Orexinas , Ratos , Ratos Sprague-Dawley , Naltrexona/farmacologia , Naltrexona/análogos & derivados , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Sacarose , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/psicologia , Antagonistas de Entorpecentes/farmacologia
2.
Neurosci Biobehav Rev ; 152: 105288, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331611

RESUMO

The opioid receptors (OR) regulate food intake. Still, despite extensive pre-clinical research, the overall effects and individual contribution of the mu (MOR), kappa (KOR), and delta (DOR) OR subtypes to feeding behaviors and food intake remain unclear. To address this, we conducted a pre-registered systematic search and meta-analysis of rodent dose-response studies to evaluate the impact of central and peripheral administration of non-selective and selective OR ligands on intake, motivation, and choice of food. All studies had a high bias risk. Still, the meta-analysis confirmed the overall orexigenic and anorexigenic effects of OR agonists and antagonists, respectively. Our results support a larger orexigenic role for central MOR agonists among OR subtypes and that peripheral OR antagonists reduce motivation for and intake of preferred foods. In binary food choice studies, peripheral OR agonists selectively increase the intake of fat-preferred foods; in contrast, they did not increase the intake of sweet carbohydrate-preferred foods. Overall, these data support that OR regulation of intake, motivation, and choice is influenced by food macronutrient composition.


Assuntos
Motivação , Receptores Opioides , Analgésicos Opioides/farmacologia , Ingestão de Alimentos , Comportamento Alimentar , Ligantes , Receptores Opioides mu
3.
Nutr Neurosci ; 25(5): 1105-1114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33151127

RESUMO

The orexin peptides promote hedonic intake and other reward behaviors through different brain sites. The opioid dynorphin peptides are co-released with orexin peptides but block their effects on reward in the ventral tegmental area (VTA). We previously showed that in the paraventricular hypothalamic nucleus (PVN), dynorphin and not orexin peptides enhance hedonic intake, suggesting they have brain-site-specific effects. Obesity alters the expression of orexin and dynorphin receptors, but whether their expression across different brain sites is important to hedonic intake is unclear. We hypothesized that hedonic intake is regulated by orexin and dynorphin peptides in PVN and that hedonic intake in obesity correlates with expression of their receptors. Here we show that in mice, injection of DYN-A1-13 (an opioid dynorphin peptide) in the PVN enhanced hedonic intake, whereas in the VTA, injection of OXA (orexin-A, an orexin peptide) enhanced hedonic intake. In PVN, OXA blunted the increase in hedonic intake caused by DYN-A1-13. In PVN, injection of norBNI (opioid receptor antagonist) reduced hedonic intake but a subsequent OXA injection failed to increase hedonic intake, suggesting that OXA activity in PVN is not influenced by endogenous opioid activity. In the PVN, DYN-A1-13 increased the intake of the less-preferred food in a two-food choice task. In obese mice fed a cafeteria diet, orexin 1 receptor mRNA across brain sites involved in hedonic intake correlated with fat preference but not caloric intake. Together, these data support that orexin and dynorphin peptides regulate hedonic intake in an opposing manner with brain-site-specific effects.


Assuntos
Dinorfinas , Núcleo Hipotalâmico Paraventricular , Analgésicos Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/metabolismo , Dinorfinas/metabolismo , Dinorfinas/farmacologia , Camundongos , Obesidade/metabolismo , Orexinas/metabolismo
4.
Science ; 368(6498): 1477-1481, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32587019

RESUMO

The closet exoplanets to the Sun provide opportunities for detailed characterization of planets outside the Solar System. We report the discovery, using radial velocity measurements, of a compact multiplanet system of super-Earth exoplanets orbiting the nearby red dwarf star GJ 887. The two planets have orbital periods of 9.3 and 21.8 days. Assuming an Earth-like albedo, the equilibrium temperature of the 21.8-day planet is ~350 kelvin. The planets are interior to, but close to the inner edge of, the liquid-water habitable zone. We also detect an unconfirmed signal with a period of ~50 days, which could correspond to a third super-Earth in a more temperate orbit. Our observations show that GJ 887 has photometric variability below 500 parts per million, which is unusually quiet for a red dwarf.

5.
Nature ; 563(7731): 365-368, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30429552

RESUMO

Barnard's star is a red dwarf, and has the largest proper motion (apparent motion across the sky) of all known stars. At a distance of 1.8 parsecs1, it is the closest single star to the Sun; only the three stars in the α Centauri system are closer. Barnard's star is also among the least magnetically active red dwarfs known2,3 and has an estimated age older than the Solar System. Its properties make it a prime target for planetary searches; various techniques with different sensitivity limits have been used previously, including radial-velocity imaging4-6, astrometry7,8 and direct imaging9, but all ultimately led to negative or null results. Here we combine numerous measurements from high-precision radial-velocity instruments, revealing the presence of a low-amplitude periodic signal with a period of 233 days. Independent photometric and spectroscopic monitoring, as well as an analysis of instrumental systematic effects, suggest that this signal is best explained as arising from a planetary companion. The candidate planet around Barnard's star is a cold super-Earth, with a minimum mass of 3.2 times that of Earth, orbiting near its snow line (the minimum distance from the star at which volatile compounds could condense). The combination of all radial-velocity datasets spanning 20 years of measurements additionally reveals a long-term modulation that could arise from a stellar magnetic-activity cycle or from a more distant planetary object. Because of its proximity to the Sun, the candidate planet has a maximum angular separation of 220 milliarcseconds from Barnard's star, making it an excellent target for direct imaging and astrometric observations in the future.

6.
Neuroscience ; 371: 337-345, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29203229

RESUMO

The dynorphin (DYN) peptide family includes opioid and non-opioid peptides, yet the physiological role of the non-opioid DYN peptides remains poorly understood. Recent evidence shows that administering the non-opioid peptide DYN-A2-17 into the paraventricular hypothalamic nucleus (PVN) simultaneously increased short-term intake of standard rodent chow and spontaneous physical activity (SPA). The present studies aimed to expand upon the mechanisms and role of DYN-A2-17 on food intake and energy expenditure. Injection of DYN-A2-17 in PVN increased SPA, energy expenditure and wheel running in the absence of food. Repeated DYN-A2-17 injection in PVN increased short-term chow intake, but this effect habituated over time and failed to alter cumulative food intake, body weight or adiposity. Pre-treatment with a CRF receptor antagonist into PVN blocked the effects of DYN-A2-17 on food intake while injection of DYN-A2-17 in PVN increased plasma ACTH. Finally, as DYN peptides are co-released with orexin peptides, we compared the effects of DYN-A2-17 to orexin-A and the opioid peptide DYN-A1-13 on food choice and intake in PVN when palatable snacks and chow were available. DYN-A1-13 selectively increased intake of palatable snacks. DYN-A2-17 and orexin-A decreased palatable snack intake while orexin-A also increased chow intake. These findings demonstrate that the non-opioid peptide DYN-A2-17 acutely regulates physical activity, energy expenditure and food intake without long-term effects on energy balance. These data also propose different roles of opioid, non-opioid DYN and orexin peptides on food choice and intake when palatable and non-palatable food options are available.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Dinorfinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Corrida , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Orexinas/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Corrida/fisiologia
7.
Int J Obes (Lond) ; 41(8): 1256-1262, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28392556

RESUMO

BACKGROUND: Identifying whether components of total energy expenditure (EE) are affected by orexin receptor (OXR1 and OXR2) stimulation or antagonism with dual orexin receptor antagonists (DORAs) has relevance for obesity treatment. Orexin receptor stimulation reduces weight gain by increasing total EE and EE during spontaneous physical activity (SPA). OBJECTIVE: The purpose of this study was to determine if a DORA (TCS-1102) in the ventrolateral preoptic area (VLPO) reduced orexin-A-induced arousal, SPA, total EE and EE during sleep, rest, wake and SPA and whether the DORA alone reduced total EE and its components. We hypothesized that: (1) a DORA would reduce orexin-A induced increases in arousal, SPA, components of total EE, reductions in sleep and the EE during sleep and (2) the DORA alone would reduce baseline (non-stimulated) SPA and total EE. SUBJECTS/METHODS: Sleep, wakefulness, SPA and EE were determined after microinjection of the DORA (TCS-1102) and orexin-A in the VLPO of male Sprague-Dawley rats with a unilateral cannula targeted towards the VLPO. Individual components of total EE were determined based on time-stamped data. RESULTS: The DORA reduced orexin-A-induced increases in arousal, SPA, total EE and EE during SPA, wake, rest and sleep 1 h post injection (P<0.05). Orexin-A significantly reduced sleep and significantly increased EE during sleep 1 h post injection (P<0.05). Furthermore, the DORA alone significantly reduced total EE, EE during sleep (NREM and REM) and resting EE 2 h post injection (P<0.05). CONCLUSIONS: These data suggest that orexin-A reduces weight gain by stimulating total EE through increases in EE during SPA, rest and sleep. Residual effects of the DORA alone include decreases in total EE and EE during sleep and rest, which may promote weight gain.


Assuntos
Metabolismo Energético/fisiologia , Orexinas/metabolismo , Área Pré-Óptica/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/antagonistas & inibidores , Área Pré-Óptica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Sono/fisiologia , Vigília/efeitos dos fármacos , Vigília/fisiologia , Aumento de Peso/efeitos dos fármacos
8.
Peptides ; 76: 14-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26654796

RESUMO

Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A(2-17), a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A(2-17) and OXA in the PVN further increases food intake compared to DYN-A(2-17) or OXA alone. This is the first report describing the effects of non-opioid DYN-A(2-17) on food intake and SPA, and suggests that DYN-A(2-17) interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A(2-17) on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.


Assuntos
Dinorfinas/fisiologia , Orexinas/metabolismo , Fragmentos de Peptídeos/fisiologia , Animais , Regulação do Apetite , Ingestão de Energia , Masculino , Camundongos Endogâmicos BALB C , Atividade Motora
9.
Physiol Behav ; 152(Pt A): 315-22, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26440318

RESUMO

Despite the increase in obesity prevalence over the last decades, humans show large inter-individual variability for susceptibility to diet-induced obesity. Understanding the biological basis of this susceptibility could identify new therapeutic alternatives against obesity. We characterized behavioral changes associated with propensity to obesity induced by cafeteria (CAF) diet consumption in mice. We show that Balb/c mice fed a CAF diet display a large inter-individual variability in susceptibility to diet-induced obesity, such that based on changes in adiposity we can classify mice as obesity prone (OP) or obesity resistant (OR). Both OP and OR were hyperphagic relative to control-fed mice but caloric intake was similar between OP and OR mice. In contrast, OR had a larger increase in locomotor activity following CAF diet compared to OP mice. Obesity resistant and prone mice showed similar intake of sweet snacks, but OR ate more savory snacks than OP mice. Two bottle sucrose preference tests showed that OP decreased their sucrose preference compared to OR mice after CAF diet feeding. Finally, to test the robustness of the OR phenotype in response to further increases in caloric intake, we fed OR mice with a personalized CAF (CAF-P) diet based on individual snack preferences. When fed a CAF-P diet, OR increased their calorie intake compared to OP mice fed the standard CAF diet, but did not reach adiposity levels observed in OP mice. Together, our data show the contribution of hedonic intake, individual snack preference and physical activity to individual susceptibility to obesity in Balb/c mice fed a standard and personalized cafeteria-style diet.


Assuntos
Dieta , Comportamento Alimentar/fisiologia , Preferências Alimentares/fisiologia , Camundongos Endogâmicos BALB C/fisiologia , Camundongos Obesos/fisiologia , Atividade Motora/fisiologia , Ração Animal/efeitos adversos , Animais , Comportamento de Escolha/fisiologia , Dieta/efeitos adversos , Dieta/psicologia , Sacarose Alimentar/administração & dosagem , Modelos Animais de Doenças , Ingestão de Alimentos/fisiologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Preferências Alimentares/psicologia , Predisposição Genética para Doença , Hiperfagia/etiologia , Hiperfagia/fisiopatologia , Hiperfagia/psicologia , Masculino , Camundongos Endogâmicos BALB C/genética , Camundongos Endogâmicos BALB C/psicologia , Camundongos Obesos/genética , Camundongos Obesos/psicologia , Especificidade da Espécie
10.
Neuroscience ; 256: 91-100, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24161277

RESUMO

Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXRs) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. We further tested whether orexin action on dopamine one receptors (DA1R) in the substantia nigra (SN) plays an important role in the generation of SPA. To test this, SPA response was determined in lean and obese rats with cannulae targeted toward the rostral lateral hypothalamus (rLH) or SN. Sleep/wake states were also measured in rats with rLH cannula and electroencephalogram/electromyogram radiotelemetry transmitters. SPA in lean rats was more sensitive to antagonism of the OX1R and in the early response to the orexin 2 agonist. OXA increased arousal equally in lean and obese rodents, which is discordant from the greater SPA response in lean rats. Obesity-resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in obesity-resistant rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in the mediation of SPA and running wheel activity.


Assuntos
Atividade Motora/fisiologia , Obesidade/fisiopatologia , Fatores Etários , Animais , Benzazepinas/farmacologia , Benzoxazóis/farmacologia , Peso Corporal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Eletromiografia , Movimentos Oculares/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Atividade Motora/efeitos dos fármacos , Naftiridinas , Neuropeptídeos/farmacologia , Antagonistas dos Receptores de Orexina , Orexinas , Ratos , Ratos Sprague-Dawley , Sono/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Ureia/análogos & derivados , Ureia/farmacologia , Vigília/efeitos dos fármacos
11.
Forensic Sci Int ; 226(1-3): 266-72, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23434379

RESUMO

Procalcitonin is regarded as a valuable marker for sepsis in living persons and even in post-mortem investigations. At the Institute of Legal Medicine, 25 autopsy cases with suspected bacterial infectious diseases or sepsis were examined using the semi-quantitative PCT-Q(®)-test (B.R.A.H.M.S., Germany) in 2010 and 2011. As controls, 75 cadavers were used for which there was no suspicion of a bacterial infectious disease or sepsis. Femoral blood was cultured from the cases and from controls, and samples from the brain, heart, lungs, liver, spleen and kidneys were examined histologically for findings seen in sepsis. Twelve cases in the sepsis/infectious disease group (48%) were classifiable as sepsis following synopsis of PCT levels, autopsy results, and histopathological and microbiological findings. This study shows that the semi-quantitative PCT-Q(®)-test is a useful supplementary marker in routine autopsy investigations, capable of classifying death as due to sepsis.


Assuntos
Calcitonina/sangue , Precursores de Proteínas/sangue , Sepse/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Encéfalo/patologia , Peptídeo Relacionado com Gene de Calcitonina , Estudos de Casos e Controles , Feminino , Patologia Legal , Granulócitos/patologia , Humanos , Rim/patologia , Leucócitos/patologia , Fígado/patologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia , Estudos Prospectivos , Baço/patologia , Adulto Jovem
12.
Int J Obes (Lond) ; 36(4): 603-13, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21610695

RESUMO

OBJECTIVE: It is unclear whether elevated spontaneous physical activity (SPA, very low-intensity physical activity) positively influences body composition long term. We determined whether SPA and caloric intake were differentially related to the growth curve trajectories of body weight, fat mass (FM) and fat-free mass (FFM) between obesity resistant and Sprague-Dawley rats at specific age intervals. DESIGN AND SUBJECTS: Body composition, SPA and caloric intake were measured in selectively-bred obesity-resistant and out-bred Sprague-Dawley rats from 1 to 18 months. Data from development throughout maturation were analyzed by longitudinal growth curve modeling to determine the rate and acceleration of body weight, FM- and FFM-gain. RESULTS: Obesity-resistant rats had a lower rate of FM gain overall, a lower acceleration in body weight early in life, significantly greater SPA and lower cumulative caloric intake. Greater SPA in obesity-resistant rats was significantly associated with a lower rate of FM gain overall and lower acceleration in body weight early in life. Obesity resistant rats lost less FFM compared with Sprague-Dawley rats despite that obesity-resistant rats had a lower acceleration in FFM gain early in life. Obesity-resistant rats gained less FM and more FFM per gram body weight and were less energy efficient than Sprague-Dawley rats. Caloric intake was significantly and positively related to body weight, FM and FFM gain in both groups. Circadian patterns of caloric intake were group and age-dependent. Our data demonstrate that elevated and sustained SPA during development and over the lifespan are related to the reduced the rate of FM gain and may preserve FFM. CONCLUSION: These data support the idea that SPA level is a reproducible marker that reliably predicts propensity for obesity in rats, and that elevated levels of SPA maintained during the lifespan promote a lean phenotype.


Assuntos
Tecido Adiposo , Ingestão de Energia , Atividade Motora , Obesidade/metabolismo , Aumento de Peso , Animais , Composição Corporal , Masculino , Fenótipo , Valor Preditivo dos Testes , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
13.
Int J Obes (Lond) ; 34(11): 1576-88, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20498657

RESUMO

OBJECTIVE: To determine if resistance to weight gain is associated with alterations in sleep-wake states and orexin receptor gene expression. DESIGN: Three-month-old obesity-susceptible Sprague-Dawley (SD) and obesity-resistant (OR) rats were fed standard rodent chow. Sleep-wake cycle was measured by radiotelemetry and orexin receptor profiles in sleep-wake regulatory areas of the brain were quantified by quantitative reverse transcriptase-PCR. SUBJECTS: Adult male obesity-susceptible SD and selectively bred OR rats. MEASUREMENTS: Body weight, food intake, energy efficiency, percent time spent in active wake (AW), quiet wake (QW), slow-wave sleep (SWS), rapid eye movement (REM) sleep, number and mean duration of sleep-wake episodes, number of stage transitions, SWS sleep delta power and orexin receptor mRNA levels were measured. RESULTS: OR rats weighed significantly less and had lower energy efficiency than SD rats. Food intake was not different between SD and OR rats. Time spent in QW was similar between groups, and therefore AW and QW were combined and are referred to as 'wakefulness'. OR rats spent significantly more time in wakefulness and less time in SWS compared with SD rats during the 24-h recording period. Relative to SD rats, OR rats had significantly fewer sleep-wake episodes and the duration of the episodes were prolonged, indicating less fragmented sleep. Furthermore, OR rats had fewer transitions between sleep stages, which indicates that OR rats were behaviorally more stable and had more consolidated sleep than obesity-susceptible SD rats. OR rats showed lower delta power during SWS, indicating a lower sleep drive. Our results showed greater orexin receptor gene expression in sleep regulatory brain areas in OR rats. CONCLUSION: These results show that prolonged wakefulness, better sleep quality, lower sleep drive and greater orexin signaling may confer protection against obesity.


Assuntos
Hipotálamo/fisiologia , Obesidade/fisiopatologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neuropeptídeos/fisiologia , Fases do Sono/fisiologia , Animais , Expressão Gênica , Hipotálamo/efeitos dos fármacos , Masculino , Obesidade/tratamento farmacológico , Receptores de Orexina , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fases do Sono/efeitos dos fármacos
14.
Acta Physiol (Oxf) ; 198(3): 303-12, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20070282

RESUMO

The hypocretins or orexins are endogenous neuropeptides synthesized in discrete lateral, perifornical and dorsal hypothalamic neurones. These multi-functional neuropeptides modulate energy homeostasis, arousal, stress, reward, reproduction and cardiovascular function. This review summarizes the role of hypocretins in modulating non-sleep-related energy expenditure with specific focus on the augmentation of whole body energy expenditure as well as hypocretin-induced physical activity and sympathetic outflow. We compare the efficacy of hypocretin-1 and 2 on energy expenditure and evaluate whether the literature implicates hypocretin signalling though the hypocretin-1 and -2 receptor as having shared and or functionally specific physiological effects. Thus far data suggest that hypocretin-1 has a more robust stimulatory effect relative to hypocretin-2. Furthermore, hypocretin-1 receptor predominantly mediates behaviours known to influence energy expenditure. Further studies on the hypocretin-2 receptor are needed.


Assuntos
Metabolismo Energético/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Animais , Regulação da Temperatura Corporal/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Humanos , Atividade Motora/fisiologia , Receptores de Orexina , Orexinas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 297(1): R176-84, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420294

RESUMO

Caloric restriction (CR) and metabolic glucoprivation affect spontaneous physical activity (SPA), but it's unknown whether these treatments similarly affect SPA in selectively bred obesity-prone (OP) and -resistant (OR) rats. OR rats have greater basal SPA and are more responsive to treatments that modulate SPA, such as orexin A administration. We hypothesized that OR rats would be more sensitive to other treatments modulating SPA. To test this, continuous 24-h SPA was measured before and during acute (24 h) and chronic (8 wk) CR in OR, OP, and Sprague-Dawley rats. Pharmacological glucoprivation was produced by injection of 2-deoxyglucose (2-DG), and SPA was measured 5 h postinjection. Acute CR increased SPA in all groups; however, the effect was dependent on the index of SPA and time interval during the 24-h time period. In contrast to OR rats, chronic CR increased distance traveled, ambulatory episodes, and time spent in ambulation and stereotypy during the time interval preceding anticipation of food in OP and Sprague-Dawley rats. Although the effects of 2-DG treatment on SPA were minimal, OR rats had significantly greater SPA than OP and Sprague-Dawley rats independent of treatment. That chronic CR failed to result in significant changes in SPA in OR rats suggests that these rats may be especially unresponsive to treatments modulating feeding. This insensitivity coupled with elevated basal SPA levels may in part mediate phenotypic traits of lean rats.


Assuntos
Restrição Calórica , Desoxiglucose/metabolismo , Metabolismo Energético , Locomoção , Obesidade/metabolismo , Animais , Peso Corporal , Desoxiglucose/administração & dosagem , Gorduras na Dieta , Modelos Animais de Doenças , Ingestão de Alimentos , Injeções Subcutâneas , Masculino , Obesidade/etiologia , Obesidade/fisiopatologia , Fenótipo , Ratos , Ratos Wistar , Fatores de Tempo
16.
Neuroendocrinology ; 87(2): 71-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17984627

RESUMO

Lean individuals have high levels of spontaneous physical activity (SPA) and the energy expenditure derived from that activity, termed non-exercise activity thermogenesis or NEAT, appears to protect them from obesity. Conversely, obesity in different human populations is characterized by low levels of SPA and NEAT. Like in humans, elevated SPA in rats appears to protect against obesity: obesity-resistant rats have significantly greater SPA and NEAT than obesity-prone rats. We review the literature on brain mechanisms important in mediating SPA and NEAT. The focus is on neuropeptides, including cholecystokinin, corticotropin-releasing hormone (also known as corticotropin-releasing factor), neuromedin U, neuropeptide Y, leptin, agouti-related protein, orexin-A (also known as hypocretin-1), and ghrelin. We also review information regarding interactions between these neuropeptides and dopamine, a neurotransmitter important in mediating motor function. Finally, we present evidence that elevated signaling of pathways mediating SPA and NEAT may protect against weight gain and obesity.


Assuntos
Atividade Motora/fisiologia , Neuropeptídeos/fisiologia , Termogênese/fisiologia , Animais , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Humanos , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ratos , Transdução de Sinais
17.
Neuroscience ; 142(1): 29-36, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16809007

RESUMO

The brain regulates energy balance and spontaneous physical activity, including both small- and large-motor activities. Neural mediators of spontaneous physical activity are currently undefined, although the amount of time spent in sedentary positions versus standing and ambulating may be important in the energetics of human obesity. Orexin A, a neuropeptide produced in caudal hypothalamic areas and projecting throughout the neuraxis, enhances arousal and spontaneous physical activity. To test the hypothesis that orexin A affects the amount of time spent moving, we injected orexin A (0-1000 pmol) into three orexin projection sites in male Sprague-Dawley rats: hypothalamic paraventricular nucleus, rostral lateral hypothalamic area and substantia nigra pars compacta, and measured spontaneous physical activity. Orexin A affects local GABA release and we co-injected orexin A with a GABA agonist, muscimol, in each brain site. Dopamine signaling is important to substantia nigra function and so we also co-injected a dopamine 1 receptor antagonist (SCH 23390) in the substantia nigra pars compacta. In all brain sites orexin A significantly increased time spent vertical and ambulating. Muscimol significantly and dose-dependently inhibited orexin A effects on time spent moving only when administered to the rostral lateral hypothalamic area. In the substantia nigra pars compacta, SCH 23390 completely blocked orexin A-induced ambulation. These data indicate that orexin A influences time spent moving, in three brain sites utilizing separate signaling mechanisms. That orexin A modulation of spontaneous physical activity occurs in brain areas with multiple roles indicates generalization across brain site, and may reflect a fundamental mechanism for enhancing activity levels. This potential for conferring physical activity stimulation may be useful for inducing shifts in time spent moving, which has important implications for obesity.


Assuntos
Região Hipotalâmica Lateral/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Movimento/efeitos dos fármacos , Neuropeptídeos/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Agonistas GABAérgicos/farmacologia , Masculino , Muscimol/farmacologia , Orexinas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
18.
Am J Physiol Regul Integr Comp Physiol ; 291(4): R889-99, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16763079

RESUMO

Selectively-bred obesity-resistant [diet resistant (DR)] rats weigh less than obesity-prone [diet-induced obese (DIO)] rats, despite comparable daily caloric intake, suggesting phenotypic energy expenditure differences. Human data suggest that obesity is maintained by reduced ambulatory or spontaneous physical activity (SPA). The neuropeptide orexin A robustly stimulates SPA. We hypothesized that DR rats have greater: 1) basal SPA, 2) orexin A-induced SPA, and 3) preproorexin, orexin 1 and 2 receptor (OX1R and OX2R) mRNA, compared with DIO rats. A group of age-matched out-bred Sprague-Dawley rats were used as additional controls for the behavioral studies. DIO, DR, and Sprague-Dawley rats with dorsal-rostral lateral hypothalamic (rLHa) cannulas were injected with orexin A (0, 31.25, 62.5, 125, 250, and 500 pmol/0.5 microl). SPA and food intake were measured for 2 h after injection. Preproorexin, OX1R and OX2R mRNA in the rLHa, and whole hypothalamus were measured by real-time RT-PCR. Orexin A significantly stimulated feeding in all rats. Orexin A-induced SPA was significantly greater in DR and Sprague-Dawley rats than in DIO rats. Two-mo-old DR rats had significantly greater rLHa OX1R and OX2R mRNA than DIO rats but comparable preproorexin levels. Eight-mo-old DR rats had elevated OX1R and OX2R mRNA compared with DIO rats, although this increase was significant for OX2R only at this age. Thus DR rats show elevated basal and orexin A-induced SPA associated with increased OX1R and OX2R gene expression, suggesting that differences in orexin A signaling through OX1R and OX2R may mediate DIO and DR phenotypes.


Assuntos
Hipotálamo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neuropeptídeos/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Receptores de Neuropeptídeos/metabolismo , Fatores Etários , Animais , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Atividade Motora/fisiologia , Neuropeptídeos/farmacologia , Receptores de Orexina , Orexinas , Fenótipo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos/genética , Transdução de Sinais/fisiologia , Especificidade da Espécie
19.
Am J Physiol Regul Integr Comp Physiol ; 289(2): R367-R372, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15947069

RESUMO

Orexin neurons are stimulated by conditions that are glucoprivic, suggesting that orexin signaling may be increased during nutritional duress. We have previously shown that injection of orexin A (OxA) into the rostral lateral hypothalamic area (rLHa) robustly and dose-dependently increases feeding behavior. Thus we hypothesized that exogenous administration of orexin A would induce a greater feeding response after acute food deprivation or perceived caloric duress achieved through 2-deoxyglucose (2DG) administration. To test our hypothesis, male Sprague-Dawley rats implanted with internal guide cannulas directed to the rLHa were exposed to varying degrees of food deprivation (0, 3, 12, 24 h) and 2DG (200 mg/kg) before intra-rLHa OxA (500 pmol) infusion. We also performed a dose-response study using graded doses of OxA (0, 31.25, 125, and 500 pmol) in fed and 24-h fasted rats. OxA administration in conjunction with the highest level of prior food deprivation (24 h) resulted in the greatest feeding response (above baseline means; 0 h deprivation: 1.9 +/- 0.6; 24 h deprivation: 4.4 +/- 0.8; P = 0.0034) and showed a dose-dependent enhancement of feeding. Additionally, 2DG administration before OxA administration resulted in a significantly higher feeding response (above baseline means: 2DG = 1.8 +/- 0.5; OxA = 1.8 +/- 0.4; 2DG + OxA = 5.1 +/- 0.6; P < 0.0001). These data support the hypothesis that orexin signaling may be important in modulating the feeding network under times of nutritional duress.


Assuntos
Antimetabólitos/farmacologia , Desoxiglucose/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neuropeptídeos/farmacologia , Animais , Relação Dose-Resposta a Droga , Ingestão de Alimentos/fisiologia , Privação de Alimentos/fisiologia , Região Hipotalâmica Lateral , Injeções , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Masculino , Neuropeptídeos/administração & dosagem , Orexinas , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 772(2): 299-306, 2002 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-12007775

RESUMO

This paper presents a GC-MS confirmation method, based on large-volume programmed-temperature vaporisation (PTV) injection, for the determination of cannabinoids in plasma samples (or whole blood) with deuterium-labelled internal standards using only 25 microl of biological fluid. The analytes, Delta(9)-tetrahydrocannabinol (THC), 11-hydroxy-Delta(9)-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Delta 9-tetrahydrocannabinol (THC-COOH), were enriched by means of solid-phase extraction cartridges containing octadecyl-bonded silica and were, subsequently, methylated. A 20 microl aliquot of an extract in hexane was injected into a PTV in solvent split mode. Method development and the results of the analyses of standard reference material and real samples are presented and discussed. This micro-method is precise and sensitive enough to assess relevant cannabinoid levels in human blood for forensic investigations as well as for clinical applications.


Assuntos
Canabinoides/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adolescente , Calibragem , Temperatura Alta , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA