RESUMO
In recent years, epigenetics has been revealed as a mechanism able to modulate the expression of virulence traits in diverse pathogens, including Candida albicans. Indeed, epigenetic regulation can sense environmental changes, leading to the rapid and reversible modulation of gene expression with consequent adaptation to novel environments. How epigenetic changes can impact expression and signalling output, including events associated with mechanisms of morphological transition and virulence, is still poorly studied. Here, using nicotinamide as a sirtuin inhibitor, we explored how the accumulation of the H3K56 acetylation, the most prominent histone acetylation in C. albicans, might affect its interaction with the host. Our experiments demonstrate that H3K56 acetylation profoundly affects the production and/or secretion of soluble factors compromising actin remodelling and cytokine production. ChIP- and RNA-seq analyses highlighted a direct impact of H3K56 acetylation on genes related to phenotypic switching, biofilm formation and cell aggregation. Direct and indirect regulation also involves genes related to cell wall protein biosynthesis, ß-glucan and mannan exposure, and hydrolytic secreted enzymes, supporting the hypothesis that the fluctuations of H3K56 acetylation in C. albicans might impair the macrophage response to the yeast and thus promote the host-immune escaping.
Assuntos
Candida albicans , Histonas , Candida albicans/metabolismo , Acetilação , Histonas/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Epigênese Genética , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Biofilmes , Niacinamida/farmacologia , Niacinamida/metabolismo , Niacinamida/análogos & derivados , Humanos , Virulência , Macrófagos/metabolismo , Macrófagos/microbiologiaRESUMO
Tissues within an organism and even cell types within a tissue can age with different velocities. However, it is unclear whether cells of one type experience different aging trajectories within a tissue depending on their spatial location. Here, we used spatial transcriptomics in combination with single-cell ATAC-seq and RNA-seq, lipidomics and functional assays to address how cells in the male murine liver are affected by age-related changes in the microenvironment. Integration of the datasets revealed zonation-specific and age-related changes in metabolic states, the epigenome and transcriptome. The epigenome changed in a zonation-dependent manner and functionally, periportal hepatocytes were characterized by decreased mitochondrial fitness, whereas pericentral hepatocytes accumulated large lipid droplets. Together, we provide evidence that changing microenvironments within a tissue exert strong influences on their resident cells that can shape epigenetic, metabolic and phenotypic outputs.
Assuntos
Epigenoma , Transcriptoma , Masculino , Camundongos , Animais , Transcriptoma/genética , Epigenoma/genética , Fígado/metabolismo , Hepatócitos/metabolismo , MetabolomaRESUMO
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Assuntos
Doenças Neurodegenerativas , Agregados Proteicos , Humanos , Doenças Neurodegenerativas/genética , Envelhecimento , Longevidade , Morte CelularRESUMO
Candida spp. represent the third most frequent worldwide cause of infection in Intensive Care Units with a mortality rate of almost 40%. The classes of antifungals currently available include azoles, polyenes, echinocandins, pyrimidine derivatives, and allylamines. However, the therapeutical options for the treatment of candidiasis are drastically reduced by the increasing antifungal resistance. The growing need for a more targeted antifungal therapy is limited by the concern of finding molecules that specifically recognize the microbial cell without damaging the host. Epigenetic writers and erasers have emerged as promising targets in different contexts, including the treatment of fungal infections. In C. albicans, Hst3p, a sirtuin that deacetylates H3K56ac, represents an attractive antifungal target as it is essential for the fungus viability and virulence. Although the relevance of such epigenetic regulator is documented for the development of new antifungal therapies, the molecular mechanism behind Hst3p-mediated epigenetic regulation remains unrevealed. Here, we provide the first genome-wide profiling of H3K56ac in C. albicans resulting in H3K56ac enriched regions associated with Candida sp. pathogenicity. Upon Hst3p inhibition, 447 regions gain H3K56ac. Importantly, these genomic areas contain genes encoding for adhesin proteins, degradative enzymes, and white-opaque switching. Moreover, our RNA-seq analysis revealed 1330 upregulated and 1081 downregulated transcripts upon Hst3p inhibition, and among them, we identified 87 genes whose transcriptional increase well correlates with the enrichment of H3K56 acetylation on their promoters, including some well-known regulators of phenotypic switching and virulence. Based on our evidence, Hst3p is an appealing target for the development of new potential antifungal drugs.
Assuntos
Candida albicans , Candidíase , Acetilação , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Epigênese Genética , Candidíase/microbiologiaRESUMO
Bone-derived mesenchymal stem cells (MSCs) reside in a hypoxic niche that maintains their differentiation potential. While hypoxia (low oxygen concentration) was reported to critically support stem cell function and osteogenesis, the molecular events triggering changes in stem cell fate decisions in response to normoxia (high oxygen concentration) remain elusive. Here, we study the impact of normoxia on mitochondrial-nuclear communication during stem cell differentiation. We show that normoxia-cultured murine MSCs undergo profound transcriptional alterations which cause irreversible osteogenesis defects. Mechanistically, high oxygen promotes chromatin compaction and histone hypo-acetylation, particularly on promoters and enhancers of osteogenic genes. Although normoxia induces metabolic rewiring resulting in elevated acetyl-CoA levels, histone hypo-acetylation occurs due to the trapping of acetyl-CoA inside mitochondria owing to decreased citrate carrier (CiC) activity. Restoring the cytosolic acetyl-CoA pool remodels the chromatin landscape and rescues the osteogenic defects. Collectively, our results demonstrate that the metabolism-chromatin-osteogenesis axis is perturbed upon exposure to high oxygen levels and identifies CiC as a novel, oxygen-sensitive regulator of the MSC function.
Assuntos
Histonas , Osteogênese , Camundongos , Animais , Osteogênese/fisiologia , Acetilcoenzima A/metabolismo , Histonas/metabolismo , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Cromatina/metabolismo , Células CultivadasRESUMO
Regulation of gene expression is linked to the organization of the genome. With age, chromatin alterations occur on all levels of genome organization, accompanied by changes in the gene expression profile. However, little is known about the changes in the level of transcriptional regulation. Here, we used a multi-omics approach and integrated ATAC-, RNA- and NET-seq to identify age-related changes in the chromatin landscape of murine liver and to investigate how these are linked to transcriptional regulation. We provide the first systematic inventory of the connection between aging, chromatin accessibility, and transcriptional regulation in a whole tissue. Aging in murine liver is characterized by an increase in chromatin accessibility at promoter regions, but not in an increase in transcriptional output. Instead, aging is accompanied by a decrease in promoter-proximal pausing of RNA polymerase II (Pol II), while initiation of transcription is not decreased as assessed by RNA polymerase mapping using CUT&RUN. Based on the data reported, we propose that these age-related changes in transcriptional regulation are due to a reduced stability of the pausing complex.
Assuntos
Envelhecimento , Cromatina , RNA Polimerase II , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Fígado/metabolismo , Camundongos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição GênicaRESUMO
Over the last decades, organoids have been established from most of the tissue-resident stem and iPS cells. They hold great promise for our understanding of mammalian organ development, but also for the study of disease or even personalised medicine. In recent years, several reports hinted at intraculture organoid variability, but a systematic analysis of such heterogeneity has not been performed before. Here, we used RNA-seq of individual intrahepatic cholangiocyte organoids to address this question. We find that batch-to-batch variation is very low, whereas passage number has a profound impact on gene expression profiles. On the other hand, there is organoid-to-organoid variability within a culture. Using differential gene expression, we did not identify specific pathways that drive this variability, pointing towards possible effects of the microenvironment within the culture condition. Taken together, our study provides a framework for organoid researchers to properly consider experimental design.
Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Animais , Células Epiteliais , Mamíferos , Organoides/metabolismo , RNA/metabolismo , Análise de Sequência de RNARESUMO
Genomic variation impacts on cellular networks by affecting the abundance (e.g., protein levels) and the functional states (e.g., protein phosphorylation) of their components. Previous work has focused on the former, while in this context, the functional states of proteins have largely remained neglected. Here, we generated high-quality transcriptome, proteome, and phosphoproteome data for a panel of 112 genomically well-defined yeast strains. Genetic effects on transcripts were generally transmitted to the protein layer, but specific gene groups, such as ribosomal proteins, showed diverging effects on protein levels compared with RNA levels. Phosphorylation states proved crucial to unravel genetic effects on signaling networks. Correspondingly, genetic variants that cause phosphorylation changes were mostly different from those causing abundance changes in the respective proteins. Underscoring their relevance for cell physiology, phosphorylation traits were more strongly correlated with cell physiological traits such as chemical compound resistance or cell morphology, compared with transcript or protein abundance. This study demonstrates how molecular networks mediate the effects of genomic variants to cellular traits and highlights the particular importance of protein phosphorylation.
Assuntos
Genoma , Genômica , Fosforilação , Proteoma/genética , Saccharomyces cerevisiae/genéticaRESUMO
Ageing is accompanied by loss of tissue integrity and organismal homeostasis partly due to decline in stem cell function. The age-associated decrease in stem cell abundance and activity is often referred to as stem cell exhaustion and is considered one major hallmark of ageing. Importantly, stem cell proliferation and differentiation potential are tightly coupled to the cellular epigenetic state. Thus, research during the last years has started to investigate how the epigenome regulates stem cell function upon ageing. Here, we summarize the role of epigenetic regulation in stem cell fate decisions and we review the impact of age-related changes of the epigenome on stem cell activity. Finally, we discuss how targeted interventions on the epigenetic landscape might delay ageing and extend health-span.
Assuntos
Senescência Celular , Epigênese Genética , Diferenciação Celular/genética , Senescência Celular/genética , Células-Tronco/fisiologiaRESUMO
Aberrant function of epigenetic modifiers plays an important role not only in the progression of cancer but also the development of drug resistance. N-alpha-acetyltransferase 40 (NAA40) is a highly specific epigenetic enzyme catalyzing the transfer of an acetyl moiety at the N-terminal end of histones H4 and H2A. Recent studies have illustrated the essential oncogenic role of NAA40 in various cancer types but its role in chemoresistance remains unclear. Here, using transcriptomic followed by metabolomic analysis in colorectal cancer (CRC) cells, we demonstrate that NAA40 controls key one-carbon metabolic genes and corresponding metabolites. In particular, through its acetyltransferase activity NAA40 regulates the methionine cycle thereby affecting global histone methylation and CRC cell survival. Importantly, NAA40-mediated metabolic rewiring promotes resistance of CRC cells to antimetabolite chemotherapy in vitro and in xenograft models. Specifically, NAA40 stimulates transcription of the one-carbon metabolic gene thymidylate synthase (TYMS), whose product is targeted by 5-fluorouracil (5-FU) and accordingly in primary CRC tumours NAA40 expression associates with TYMS levels and poorer 5-FU response. Mechanistically, NAA40 activates TYMS by preventing enrichment of repressive H2A/H4S1ph at the nuclear periphery. Overall, these findings define a novel regulatory link between epigenetics and cellular metabolism mediated by NAA40, which is harnessed by cancer cells to evade chemotherapy.
Assuntos
Carbono/metabolismo , Histonas/metabolismo , Acetiltransferases N-Terminal/metabolismo , Processamento de Proteína Pós-Traducional/genética , Resistencia a Medicamentos Antineoplásicos , HumanosRESUMO
Gene expression involves regulation of chromatin structure and transcription, as well as processing of the transcribed mRNA. While there are feedback mechanisms, it is not clear whether these include crosstalk between chromatin architecture and mRNA decay. To address this, we performed a genome-wide genetic screen using a Saccharomyces cerevisiae strain harbouring the H3K56A mutation, which is known to perturb chromatin structure and nascent transcription. We identified Puf5 (also known as Mpt5) as essential in an H3K56A background. Depletion of Puf5 in this background leads to downregulation of Puf5 targets. We suggest that Puf5 plays a role in post-transcriptional buffering of mRNAs, and support this by transcriptional shutoff experiments in which Puf5 mRNA targets are degraded slower in H3K56A cells compared to wild-type cells. Finally, we show that post-transcriptional buffering of Puf5 targets is widespread and does not occur only in an H3K56A mutant, but also in an H3K4R background, which leads to a global increase in nascent transcription. Our data suggest that Puf5 determines the fate of its mRNA targets in a context-dependent manner acting as an mRNA surveillance hub balancing deregulated nascent transcription to maintain physiological mRNA levels.
Assuntos
Proteínas de Ligação a RNA , Proteínas de Saccharomyces cerevisiae , Cromatina/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição GênicaRESUMO
Ribosome biogenesis is an essential cellular process that requires integration of extracellular cues, such as metabolic state, with intracellular signalling, transcriptional regulation and chromatin accessibility at the ribosomal DNA. Here, we demonstrate that the recently identified histone modification, methylation of H2AQ105 (H2AQ105me), is an integral part of a dynamic chromatin network at the rDNA locus. Its deposition depends on a functional mTor signalling pathway and acetylation of histone H3 at position K56, thus integrating metabolic and proliferative signals. Furthermore, we identify a first epigenetic reader of this modification, the ribonucleoprotein Nhp2, which specifically recognizes H2AQ105me. Based on functional and proteomic data, we suggest that Nhp2 functions as an adapter to bridge rDNA chromatin with components of the small subunit processome to efficiently coordinate transcription of rRNA with its post-transcriptional processing. We support this by showing that an H2AQ105A mutant has a mild defect in early processing of rRNA.
Assuntos
Proteômica , Transcrição Gênica , Nucléolo Celular/metabolismo , Histonas/genética , Histonas/metabolismo , RNA Ribossômico/genéticaRESUMO
Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Imunidade Inata , Inflamassomos , Interleucina-1beta , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , SARS-CoV-2RESUMO
Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper.
Assuntos
Folículo Piloso , Espermina , Acetiltransferases/genética , Diferenciação Celular , Espermidina , Células-TroncoRESUMO
Bone-marrow mesenchymal stem cell (BM-MSC) proliferation and lineage commitment are under the coordinated control of metabolism and epigenetics; the MSC niche contains low oxygen, which is an important determinant of the cellular metabolic state. In turn, metabolism drives stem cell fate decisions via alterations of the chromatin landscape. Due to the fundamental role of BM-MSCs in the development of adipose tissue, bones and cartilage, age-associated changes in metabolism and the epigenome perturb the balance between stem cell proliferation and differentiation leading to stem cell depletion, fat accumulation and bone-quality related diseases. Therefore, understanding the dynamics of the metabolism-chromatin interplay is crucial for maintaining the stem cell pool and delaying the development and progression of ageing. This review summarizes the current knowledge on the role of metabolism in stem cell identity and highlights the impact of the metabolic inputs on the epigenome, with regards to stemness and pluripotency.
Assuntos
Células-Tronco Mesenquimais , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células/genética , Cromatina/genéticaRESUMO
Aging is accompanied by a general decline in the function of many cellular pathways. However, whether these are causally or functionally interconnected remains elusive. Here, we study the effect of mitochondrial-nuclear communication on stem cell aging. We show that aged mesenchymal stem cells exhibit reduced chromatin accessibility and lower histone acetylation, particularly on promoters and enhancers of osteogenic genes. The reduced histone acetylation is due to impaired export of mitochondrial acetyl-CoA, owing to the lower levels of citrate carrier (CiC). We demonstrate that aged cells showed enhanced lysosomal degradation of CiC, which is mediated via mitochondrial-derived vesicles. Strikingly, restoring cytosolic acetyl-CoA levels either by exogenous CiC expression or via acetate supplementation, remodels the chromatin landscape and rescues the osteogenesis defects of aged mesenchymal stem cells. Collectively, our results establish a tight, age-dependent connection between mitochondrial quality control, chromatin and stem cell fate, which are linked together by CiC.
Assuntos
Histonas , Células-Tronco Mesenquimais , Histonas/metabolismo , Osteogênese/genética , Acetilcoenzima A/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Células-Tronco Mesenquimais/metabolismoRESUMO
The advent of quantitative approaches that enable interrogation of transcription at single nucleotide resolution has allowed a novel understanding of transcriptional regulation previously undefined. However, little is known, at such high resolution, how transcription factors directly influence RNA Pol II pausing and directionality. To map the impact of transcription/elongation factors on transcription dynamics genome-wide at base pair resolution, we developed an adapted NET-seq protocol called NET-prism (Native Elongating Transcription by Polymerase-Regulated Immunoprecipitants in the Mammalian genome). Application of NET-prism on elongation factors (Spt6, Ssrp1), splicing factors (Sf1), and components of the pre-initiation complex (PIC) (TFIID, and Mediator) reveals their inherent command on transcription dynamics, with regards to directionality and pausing over promoters, splice sites, and enhancers/super-enhancers. NET-prism will be broadly applicable as it exposes transcription factor/Pol II dependent topographic specificity and thus, a new degree of regulatory complexity during gene expression.
Assuntos
Nucleotídeos/genética , RNA Polimerase II/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Genoma/genética , Humanos , Fosforilação , Regiões Promotoras Genéticas , Splicing de RNA/genética , Análise de Sequência de RNARESUMO
Cellular heterogeneity is an important contributor to biological function and is employed by cells, tissues and organisms to adapt, compensate, respond, defend and/or regulate specific processes. Research over the last decades has revealed that transcriptional noise is a major driver for cell-to-cell variability. In this review we will discuss sources of transcriptional variability, in particular bursting of gene expression and how it could contribute to cellular states and fate decisions. We will highlight recent developments in single cell sequencing technologies that make it possible to address cellular heterogeneity in unprecedented detail. Finally, we will review recent literature, in which these new technologies are harnessed to address pressing questions in the field of ageing research, such as transcriptional noise and cellular heterogeneity in the course of ageing.
Assuntos
Envelhecimento/genética , Heterogeneidade Genética , Transcrição Gênica , Epigênese Genética , Humanos , Análise de Célula ÚnicaRESUMO
Fibrillarin (FBL) is a dual-function nucleolar protein that catalyzes 2'-O methylation of pre-rRNA and methylation of histone H2A at glutamine 104 (H2AQ104me). The mechanisms that regulate FBL activity are unexplored. Here, we show that FBL is acetylated at several lysine residues by the acetyltransferase CBP and deacetylated by SIRT7. While reversible acetylation does not impact FBL-mediated pre-rRNA methylation, hyperacetylation impairs the interaction of FBL with histone H2A and chromatin, thereby compromising H2AQ104 methylation (H2AQ104me) and rDNA transcription. SIRT7-dependent deacetylation of FBL ensures H2AQ104me and high levels of rRNA synthesis during interphase. At the onset of mitosis, nucleolar disassembly is accompanied by hyperacetylation of FBL, loss of H2AQ104me, and repression of polymerase I (Pol I) transcription. Overexpression of an acetylation-deficient, but not an acetylation-mimicking, FBL mutant restores H2AQ104me and transcriptional activity. The results reveal that SIRT7-dependent deacetylation impacts nucleolar activity by an FBL-driven circuitry that mediates cell-cycle-dependent fluctuation of rDNA transcription.