Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 50, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741159

RESUMO

BACKGROUND: G-quadruplex DNA (G4) is a non-canonical structure forming in guanine-rich regions, which play a vital role in cancer biology and are now being acknowledged in both nuclear and mitochondrial (mt) genome. However, the impact of G4-based targeted therapy on both nuclear and mt genome, affecting mt function and its underlying mechanisms remain largely unexplored. METHODS: The mechanisms of action and therapeutic effects of a G4-binding platinum(II) complex, Pt-ttpy, on mitochondria were conducted through a comprehensive approaches with in vitro and in vivo models, including ICP-MS for platinum measurement, PCR-based genetic analysis, western blotting (WB), confocal microscope for mt morphology study, extracellular flux analyzer, JC1 and Annexin V apoptosis assay, flow cytometry and high content microscope screening with single-cell quantification of both ROS and mt specific ROS, as well as click-chemistry for IF study of mt translation. Decipher Pt-ttpy effects on nuclear-encoded mt related genes expression were undertaken via RNA-seq, Chip-seq and CUT-RUN assays. RESULTS: Pt-ttpy, shows a highest accumulation in the mitochondria of A2780 cancer cells as compared with two other platinum(II) complexes with no/weak G4-binding properties, Pt-tpy and cisplatin. Pt-ttpy induces mtDNA deletion, copy reduction and transcription inhibition, hindering mt protein translation. Functional analysis reveals potent mt dysfunction without reactive oxygen species (ROS) induction. Mechanistic study provided first evidence that most of mt ribosome genes are highly enriched in G4 structures in their promoter regions, notably, Pt-ttpy impairs most nuclear-encoded mt ribosome genes' transcription through dampening the recruiting of transcription initiation and elongation factors of NELFB and TAF1 to their promoter with G4-enriched sequences. In vivo studies show Pt-ttpy's efficient anti-tumor effects, disrupting mt genome function with fewer side effects than cisplatin. CONCLUSION: This study underscores Pt-ttpy as a G4-binding platinum(II) complex, effectively targeting cancer mitochondria through dual action on mt and nuclear G4-enriched genomes without inducing ROS, offering promise for safer and effective platinum-based G4-targeted cancer therapy.


Assuntos
Quadruplex G , Mitocôndrias , Quadruplex G/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Genoma Mitocondrial , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Platina/farmacologia , Animais
2.
Int J Radiat Oncol Biol Phys ; 118(5): 1294-1307, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778425

RESUMO

PURPOSE: High-throughput screening (HTS) platforms have been widely used to identify candidate anticancer drugs and drug-drug combinations; however, HTS-based identification of new drug-ionizing radiation (IR) combinations has rarely been reported. Herein, we developed an integrated approach including cell-based HTS and computational large-scale isobolographic analysis to accelerate the identification of radiosensitizing compounds acting strongly and more specifically on cancer cells. METHODS AND MATERIALS: In a 384-well plate format, 160 compounds likely to interfere with the cell response to radiation were screened on human glioblastoma (U251-MG) and cervix carcinoma (ME-180) cell lines, as well as on normal fibroblasts (CCD-19Lu). After drug exposure, cells were irradiated or not and short-term cell survival was assessed by high-throughput cell microscopy. Computational large-scale dose-response and isobolographic approach were used to identify promising synergistic drugs radiosensitizing cancer cells rather than normal cells. Synergy of a promising compound was confirmed on ME-180 cells by an independent 96-well assay protocol, and finally, by the gold-standard colony forming assay. RESULTS: We retained 4 compounds synergistic at 2 isoeffects in U251-MG and ME-180 cell lines and 11 compounds synergistically effective in only one cancer cell line. Among these 15 promising radiosensitizers, 5 compounds showed limited toxicity combined or not with IR on normal fibroblasts. CONCLUSIONS: Overall, this study demonstrated that HTS chemoradiation screening together with large-scale computational analysis is an efficient tool to identify synergistic drug-IR combinations, with concomitant assessment of unwanted toxicity on normal fibroblasts. It sparks expectations to accelerate the discovery of highly desired agents improving the therapeutic index of radiation therapy.


Assuntos
Antineoplásicos , Neoplasias , Radiossensibilizantes , Feminino , Humanos , Ensaios de Triagem em Larga Escala/métodos , Detecção Precoce de Câncer , Radiossensibilizantes/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral
3.
Nucleic Acids Res ; 51(20): 11239-11257, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811881

RESUMO

BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.


Assuntos
Processamento Alternativo , Precursores de RNA , Apoptose , Isoformas de Proteínas/genética , Precursores de RNA/genética , Sítios de Splice de RNA , Humanos
4.
Nucleic Acids Res ; 50(20): 11799-11819, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36350639

RESUMO

The oncogenic Epstein-Barr virus (EBV) evades the immune system but has an Achilles heel: its genome maintenance protein EBNA1. Indeed, EBNA1 is essential for viral genome maintenance but is also highly antigenic. Hence, EBV seemingly evolved a system in which the glycine-alanine repeat (GAr) of EBNA1 limits the translation of its own mRNA to the minimal level to ensure its essential function, thereby, at the same time, minimizing immune recognition. Therefore, defining intervention points at which to interfere with GAr-based inhibition of translation is an important step to trigger an immune response against EBV-carrying cancers. The host protein nucleolin (NCL) plays a critical role in this process via a direct interaction with G-quadruplexes (G4) formed in the GAr-encoding sequence of the viral EBNA1 mRNA. Here we show that the C-terminal arginine-glycine-rich (RGG) motif of NCL is crucial for its role in GAr-based inhibition of translation by mediating interaction of NCL with G4 of EBNA1 mRNA. We also show that this interaction depends on the type I arginine methyltransferase family, notably PRMT1 and PRMT3: drugs or small interfering RNA that target these enzymes prevent efficient binding of NCL on G4 of EBNA1 mRNA and relieve GAr-based inhibition of translation and of antigen presentation. Hence, this work defines type I arginine methyltransferases as therapeutic targets to interfere with EBNA1 and EBV immune evasion.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Infecções Tumorais por Vírus , Humanos , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Sistema Imunitário/metabolismo , Vírus Oncogênicos/genética , Vírus Oncogênicos/metabolismo , Proteína-Arginina N-Metiltransferases , Proteínas Repressoras , RNA Mensageiro/metabolismo , Infecções Tumorais por Vírus/tratamento farmacológico , Infecções Tumorais por Vírus/metabolismo
5.
Angew Chem Int Ed Engl ; 61(40): e202207384, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993443

RESUMO

Human telomeric G-quadruplex DNA structures are attractive anticancer drug targets, but the target's polymorphism complicates the drug design: different ligands prefer different folds, and very few complexes have been solved at high resolution. Here we report that Phen-DC3 , one of the most prominent G-quadruplex ligands in terms of high binding affinity and selectivity, causes dTAGGG(TTAGGG)3 to completely change its fold in KCl solution from a hybrid-1 to an antiparallel chair-type structure, wherein the ligand intercalates between a two-quartet unit and a pseudo-quartet, thereby ejecting one potassium ion. This unprecedented high-resolution NMR structure shows for the first time a true ligand intercalation into an intramolecular G-quadruplex.


Assuntos
Antineoplásicos , Quadruplex G , DNA/química , Humanos , Ligantes , Potássio/química , Telômero
6.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861550

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/farmacologia , Ligação Proteica , Piridinas/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
7.
Life Sci Alliance ; 5(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34785537

RESUMO

The role of G-quadruplex (G4) RNA structures is multifaceted and controversial. Here, we have used as a model the EBV-encoded EBNA1 and the Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded LANA1 mRNAs. We have compared the G4s in these two messages in terms of nucleolin binding, nuclear mRNA retention, and mRNA translation inhibition and their effects on immune evasion. The G4s in the EBNA1 message are clustered in one repeat sequence and the G4 ligand PhenDH2 prevents all G4-associated activities. The RNA G4s in the LANA1 message take part in similar multiple mRNA functions but are spread throughout the message. The different G4 activities depend on flanking coding and non-coding sequences and, interestingly, can be separated individually. Together, the results illustrate the multifunctional, dynamic and context-dependent nature of G4 RNAs and highlight the possibility to develop ligands targeting specific RNA G4 functions. The data also suggest a common multifunctional repertoire of viral G4 RNA activities for immune evasion.


Assuntos
DNA Intergênico/química , DNA Intergênico/genética , Quadruplex G , RNA/química , RNA/genética , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação da Expressão Gênica , Humanos , Transporte de RNA , RNA Viral
8.
Nucleic Acids Res ; 49(22): 12644-12660, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34875077

RESUMO

G-quadruplexes (G4s) are secondary structures forming in G-rich nucleic acids. G4s are assumed to play critical roles in biology, nonetheless their detection in cells is still challenging. For tracking G4s, synthetic molecules (G4 ligands) can be used as reporters and have found wide application for this purpose through chemical functionalization with a fluorescent tag. However, this approach is limited by a low-labeling degree impeding precise visualization in specific subcellular regions. Herein, we present a new visualization strategy based on the immuno-recognition of 5-bromo-2'-deoxyuridine (5-BrdU) modified G4 ligands, functionalized prior- or post-G4-target binding by CuAAC. Remarkably, recognition of the tag by antibodies leads to the detection of the modified ligands exclusively when bound to a G4 target both in vitro, as shown by ELISA, and in cells, thereby providing a highly efficient G4-ligand Guided Immunofluorescence Staining (G4-GIS) approach. The obtained signal amplification revealed well-defined fluorescent foci located in the perinuclear space and RNase treatment revealed the preferential binding to G4-RNA. Furthermore, ligand treatment affected significantly BG4 foci formation in cells. Our work headed to the development of a new imaging approach combining the advantages of immunostaining and G4-recognition by G4 ligands leading to visualization of G4/ligands species in cells with unrivaled precision and sensitivity.


Assuntos
Bromodesoxiuridina , Imunofluorescência/métodos , Quadruplex G , Células A549 , Linhagem Celular , Química Click , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes
9.
Nucleic Acids Res ; 49(13): 7695-7712, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232992

RESUMO

The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.


Assuntos
COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Quadruplex G , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Sequência de Aminoácidos , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral , Relação Estrutura-Atividade , Replicação Viral
10.
Oncotarget ; 12(15): 1444-1456, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316326

RESUMO

Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.

11.
Metallomics ; 13(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34021581

RESUMO

Pt-ttpy (tolyl terpyridin-Pt complex) covalently binds to G-quadruplex (G4) structures in vitro and to telomeres in cellulo via its Pt moiety. Here, we identified its targets in the human genome, in comparison to Pt-tpy, its derivative without G4 affinity, and cisplatin. Pt-ttpy, but not Pt-tpy, induces the release of the shelterin protein TRF2 from telomeres concomitantly to the formation of DNA damage foci at telomeres but also at other chromosomal locations. γ-H2AX chromatin immunoprecipitation (ChIP-seq) after treatment with Pt-ttpy or cisplatin revealed accumulation in G- and A-rich tandemly repeated sequences, but not particularly in potential G4 forming sequences. Collectively, Pt-ttpy presents dual targeting efficiency on DNA, by inducing telomere dysfunction and genomic DNA damage at specific loci.


Assuntos
Cisplatino/farmacologia , Dano ao DNA , Quadruplex G , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/patologia , Telômero/efeitos dos fármacos , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Compostos Organoplatínicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Células Tumorais Cultivadas
12.
Chembiochem ; 22(14): 2457-2467, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34008276

RESUMO

Mitochondria are involved in many cellular pathways and dysfunctional mitochondria are linked to various diseases. Hence efforts have been made to design mitochondria-targeted fluorophores for monitoring the mitochondrial status. However, the factors that govern the mitochondria-targeted potential of dyes are not well-understood. In this context, we synthesized analogues of the TP-2Bzim probe belonging to the vinyltriphenylamine (TPA) class and already described for its capacity to bind nuclear DNA in fixed cells and mitochondria in live cells. These analogues (TP-1Bzim, TPn -2Bzim, TP1+ -2Bzim, TN-2Bzim) differ in the cationic charge, the number of vinylbenzimidazolium branches and the nature of the triaryl core. Using microscopy, we demonstrated that the cationic derivatives accumulate in mitochondria but do not reach mtDNA. Under depolarisation of the mitochondrial membrane, TP-2Bzim and TP1+ -2Bzim translocate to the nucleus in direct correlation with their strong DNA affinity. This reversible phenomenon emphasizes that these probes can be used to monitor ΔΨm variations.


Assuntos
Mitocôndrias
13.
Chemistry ; 27(3): 1113-1121, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33617136

RESUMO

Stabilizing the DNA and RNA structures known as G-quadruplexes (G4s) using specific ligands is a strategy that has been proposed to fight cancer. However, although G-quadruplex:ligand (G4:L) interactions have often been investigated, whether or not ligands are able to disrupt G-quadruplex:protein (G4:P) interactions remains poorly studied. In this study, using native mass spectrometry, we have investigated ternary G4:L:P complexes formed by G4s, some of the highest affinity ligands, and the binding domain of the RHAU helicase. Our results suggest that RHAU binds not only preferentially to parallel G4s, but also to free external G-quartets. We also found that, depending on the G4, ligands could prevent the binding of the peptide, either by direct competition for the binding sites (orthosteric inhibition) or by inducing conformational changes (allosteric inhibition). Notably, the ligand Cu-ttpy (ttpy=4'-tolyl-2,2':6',2''-terpyridine) induced a conformational change that increased the binding of the peptide. This study illustrates that it is important to not only characterize drug-target interactions, but also how the binding to other partners is affected.


Assuntos
RNA Helicases DEAD-box/química , DNA/química , Quadruplex G , RNA/química , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Ligantes
14.
Chembiochem ; 22(10): 1811-1817, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33450114

RESUMO

Several small-molecule ligands specifically bind and stabilize G-quadruplex (G4) nucleic acid structures, which are considered to be promising therapeutic targets. G4s are polymorphic structures of varying stability, and their formation is dynamic. Here, we investigate the mechanisms of ligand binding to dynamically populated human telomere G4 DNA by using the bisquinolinium based ligand Phen-DC3 and a combination of single-molecule FRET microscopy, ensemble FRET and CD spectroscopies. Different cations are used to tune G4 polymorphism and folding dynamics. We find that ligand binding occurs to pre-folded G4 structures and that Phen-DC3 also induces G4 formation in unfolded single strands. Following ligand binding to dynamically populated G4s, the DNA undergoes pronounced conformational redistributions that do not involve direct ligand-induced G4 conformational interconversion. On the contrary, the redistribution is driven by ligand-induced G4 folding and trapping of dynamically populated short-lived conformation states. Thus, ligand-induced stabilization does not necessarily require the initial presence of stably folded G4s.


Assuntos
Quadruplex G , Ligantes , Telômero/química , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Quinolinas/química , Quinolinas/metabolismo
15.
Chem Commun (Camb) ; 56(92): 14459-14462, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33146636

RESUMO

Two Pt complexes with high quantum yields and photostability, and low cytotoxicity, were developed to track RNA G-quadruplexes (GQs) in live cells. Higher number and intensity, and longer lifetime of fluorescent foci in cancer cells than those in healthy cells suggest that the quantity and folding dynamics of RNA GQs could not only correlate to their biological functions, but be two novel biomarkers to characterize cancerous cells.


Assuntos
Biomarcadores Tumorais/análise , Complexos de Coordenação/química , DNA/química , Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Platina/química , Animais , Técnicas Biossensoriais , Células CHO , Bovinos , Cricetulus , Quadruplex G , Células HeLa , Humanos , Cinética , Fígado/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Imagem Óptica , RNA/metabolismo
16.
Elife ; 92020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32723475

RESUMO

Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.


Assuntos
Quadruplex G , RNA/química , Telomerase/química , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Ligantes , Nanotecnologia , Conformação de Ácido Nucleico , Ligação Proteica
18.
Sci Rep ; 10(1): 6881, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327691

RESUMO

Triphenylamines (TPAs) were previously shown to trigger cell death under prolonged one- or two-photon illumination. Their initial subcellular localization, before prolonged illumination, is exclusively cytoplasmic and they translocate to the nucleus upon photoactivation. However, depending on their structure, they display significant differences in terms of precise initial localization and subsequent photoinduced cell death mechanism. Here, we investigated the structural features of TPAs that influence cell death by studying a series of molecules differing by the number and chemical nature of vinyl branches. All compounds triggered cell death upon one-photon excitation, however to different extents, the nature of the electron acceptor group being determinant for the overall cell death efficiency. Photobleaching susceptibility was also an important parameter for discriminating efficient/inefficient compounds in two-photon experiments. Furthermore, the number of branches, but not their chemical nature, was crucial for determining the cellular uptake mechanism of TPAs and their intracellular fate. The uptake of all TPAs is an active endocytic process but two- and three-branch compounds are taken up via distinct endocytosis pathways, clathrin-dependent or -independent (predominantly caveolae-dependent), respectively. Two-branch TPAs preferentially target mitochondria and photoinduce both apoptosis and a proper necrotic process, whereas three-branch TPAs preferentially target late endosomes and photoinduce apoptosis only.


Assuntos
Aminas/toxicidade , Endocitose/efeitos dos fármacos , Endocitose/efeitos da radiação , Espaço Intracelular/metabolismo , Luz , Aminas/química , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência
19.
Biochemistry ; 59(12): 1261-1272, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32191439

RESUMO

We investigate herein the interaction between nucleolin (NCL) and a set of G4 sequences derived from the CEB25 human minisatellite that adopt a parallel topology while differing in the length of the central loop (from nine nucleotides to one nucleotide). It is revealed that NCL strongly binds to long-loop (five to nine nucleotides) G4 while interacting weakly with the shorter variants (loop with fewer than three nucleotides). Photo-cross-linking experiments using 5-bromo-2'-deoxyuridine (BrU)-modified sequences further confirmed the loop-length dependency, thereby indicating that the WT-CEB25-L191 (nine-nucleotide loop) is the best G4 substrate. Quantitative proteomic analysis (LC-MS/MS) of the product(s) obtained by photo-cross-linking NCL to this sequence enabled the identification of one contact site corresponding to a 15-amino acid fragment located in helix α2 of RNA binding domain 2 (RBD2), which sheds light on the role of this structural element in G4-loop recognition. Then, the ability of a panel of benchmark G4 ligands to prevent the NCL-G4 interaction was explored. It was found that only the most potent ligand PhenDC3 can inhibit NCL binding, thereby suggesting that the terminal guanine quartet is also a strong determinant of G4 recognition, putatively through interaction with the RGG domain. This study describes the molecular mechanism by which NCL recognizes G4-containing long loops and leads to the proposal of a model implying a concerted action of RBD2 and RGG domains to achieve specific G4 recognition via a dual loop-quartet interaction.


Assuntos
Quadruplex G , Repetições Minissatélites/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Bromodesoxiuridina/química , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Fosfoproteínas/química , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteômica , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/química , Espectrometria de Massas em Tandem , Nucleolina
20.
Cell Chem Biol ; 26(12): 1681-1691.e5, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31668518

RESUMO

Heme is an essential cofactor for many enzymes, but free heme is toxic and its levels are tightly regulated. G-quadruplexes bind heme avidly in vitro, raising the possibility that they may sequester heme in vivo. If so, then treatment that displaces heme from quadruplexes is predicted to induce expression of genes involved in iron and heme homeostasis. Here we show that PhenDC3, a G-quadruplex ligand structurally unrelated to heme, displaces quadruplex-bound heme in vitro and alters transcription in cultured human cells, upregulating genes that support heme degradation and iron homeostasis, and most strikingly causing a 30-fold induction of heme oxidase 1, the key enzyme in heme degradation. We propose that G-quadruplexes sequester heme to protect cells from the pathophysiological consequences of free heme.


Assuntos
Compostos de Anéis Fundidos , Quadruplex G , Heme/metabolismo , Sítios de Ligação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Catalítico/metabolismo , Heme/química , Humanos , Ferro/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA